

PROFIBUS DP/PA Stratos® Evo A451N Stratos® Pro A221(N/X)

Vor Installation lesen. Für künftige Verwendung aufbewahren.

www.knick.de

Lesen Sie dieses Dokument und bewahren Sie es für künftige Verwendung auf. Stellen Sie bitte vor der Montage, der Installation, dem Betrieb oder der Instandhaltung des Produkts sicher, dass Sie die hierin beschriebenen Anweisungen und Risiken vollumfänglich verstehen. Befolgen Sie unbedingt alle Sicherheitshinweise. Die Nichteinhaltung von Anweisungen in diesem Dokument kann schwere Verletzungen von Personen und/oder Sachschäden zur Folge haben. Dieses Dokument kann ohne Vorankündigung geändert werden. Die folgenden ergänzenden Hinweise erläutern die Inhalte und den Aufbau von sicherheitsrelevanten Informationen in diesem Dokument.

Sicherheitskapitel

Im Sicherheitskapitel dieses Dokuments wird ein grundlegendes Sicherheitsverständnis aufgebaut. Es werden allgemeine Gefährdungen aufgezeigt und Strategien zu deren Vermeidung gegeben.

Sicherheitsleitfaden

Im externen Sicherheitsleitfaden wird ein grundlegendes Sicherheitsverständnis aufgebaut. Es werden allgemeine Gefährdungen aufgezeigt und Strategien zu deren Vermeidung gegeben.

Warnhinweise

In diesem Dokument werden folgende Warnhinweise verwendet, um auf Gefährdungssituationen hinzuweisen:

Symbol	Kategorie	Bedeutung	Bemerkung	
	WARNUNG!	Kennzeichnet eine Situation, die zum Tod oder zu schweren (irreversiblen) Verletzun- gen von Personen führen kann.	Informationen zur Vermeidung der Gefährdung werden in den Warnhinweisen angegeben.	
	VORSICHT!	Kennzeichnet eine Situation, die zu leichten bis mittelschweren (reversiblen) Verletzun- gen von Personen führen kann.		
ohne	ACHTUNG!	Kennzeichnet eine Situation, die zu Sach- und Umweltschäden führen kann.	-	

Mitgeltende Dokumente

Stratos Sicherheitsleitfaden

Inhaltsverzeichnis

Ergänzende Hinweise	2
Lieferumfang Dokumentation	7
Sicherheit	
Bestimmungsgemäßer Gebrauch Stratos Pro A221(N/X)	8
Bestimmungsgemäßer Gebrauch Stratos Evo A451N	9
Einführung	12
Einsatzbeispiel Stratos Pro A221(N/X)	13
Einsatzbeispiel Stratos Evo A451N	14
Überblick	15
Lieferumfang	15
Montageplan, Abmessungen	16
Montagezubehör	
Wechselmodul einsetzen	17
Wechselmodule pH, Sauerstoff	
Wechselmodule Leitfähigkeit	19
Wechselmodul Dual-Leitfähigkeit	
Digitale Sensoren: Memosens	21
Memosens-Sensor anschließen	
Klemmenschild und Typschilder	23
Signalbelegung A221(N/X)	25
Stromversorgung, Signalbelegung A451N	
Messverfahren wählen	
Inbetriebnahme	
Betriebsart Messen	
Bedienung	
Tastatur	
Display	
Displaydarstellung im Messmodus	
Farbgeleitete Nutzerführung	
Betriebsarten	
Betriebsart wählen	
Werte eingeben	
Meldungen Alarm	
Übersicht Menü	
Memosens-Sensor anschließen	
Memosens-Sensor wechseln	

3

Konfigurierung	
Übersicht Konfigurierung pH	
Kopiervorlage Konfigurierung pH	
Unterstützung von Pfaudler-Sensoren	
Übersicht Konfigurierung Cond	
Kopiervorlage Konfigurierung Cond	64
Übersicht Konfigurierung Condl	
Kopiervorlage Konfigurierung Condl	
Konfigurierung Oxy-Sensor	
Kopiervorlage Konfigurierung Oxy	
Gerätetyp: Cond-Cond	
pH-Wert-Berechnung aus Dual-Leitfähigkeitsmessung	
Konfigurierung Cond-Cond	
Kopiervorlage Konfigurierung CC	
Konfigurierung Eingang CONTROL	
Konfigurierung Alarm	
Konfigurierung Uhrzeit / Datum	
Kalibrierung	
Nullpunktverschiebung	
pH: Automatische Kalibrierung	
pH: Manuelle Kalibrierung	
pH: vorgemessene Sensoren	
Steilheit: % in mV umrechnen	
Redox-Kalibrierung (ORP)	
Produktkalibrierung	
Oxy: Kalibrierung	
Steilheitskalibrierung Luft	
Steilheitskalibrierung Wasser	141
LDO-Kalibrierung	143
LDO-Steilheitskalibrierung an Luft	144
LDO-Steilheitskalibrierung in Wasser	146
LDO-Nullpunktkalibrierung in N ₂	148
LDO-Offsetkorrektur	149
Leitfähigkeit: Kalibrierung	150
Kalibrierung mit Kalibrierlösung	151
Leitfähigkeit induktiv: Kalibrierung	152
Kalibrierung durch Eingabe Zellfaktor	153
Nullpunkt-Kalibrierung	
Messung	155

Diagnose	
Service	
Fehlermeldungen	
Fehlermeldungen pH	
Fehlermeldungen Cond	
Fehlermeldungen Condl	
Fehlermeldungen Oxy	
Fehlermeldungen Cond-Cond	
Sensocheck und Sensoface	
Entsorgung	
Rücksendung	
Außerbetriebnahme	
Lieferprogramm PROFIBUS PA	
Lieferprogramm PROFIBUS DP	
PROFIBUS	
Einführung	
Prinzipieller Aufbau	
Anschlussbelegung PROFIBUS PA	
Anschlussbelegung PROFIBUS DP	
Prinzipdarstellung Blocktypen PROFIBUS PA	
Prinzipdarstellung Blocktypen PROFIBUS DP	
Das Blockmodell	
Physical Block (PB)	
Transducer Block (TB)	
Function Block (FB)	
Übersicht Software	
Diagnose	
MEAS MODE (Messwertmodus)	
Condensed Status	
Classic Status	
Ubersichtstabelle DIAGNOSIS_EXTENSION	
Inbetriebnahme am PROFIBUS	
Konfigurationsdaten	
Zyklische Datenkommunikation	
Physical Block Parameters	
AU FUNCTION BIOCK Parameters	
DI FUNCTION BIOCK Parameters	
DO FUNCTION BIOCK Parameters	

Busparameter Standard Transducer Block (TB)	226
Busparameter herstellerspezifischer Transducer Block (TB)	228
Produktkalibrierung	258
Installation	259
Wechselmodul einsetzen	260
Wechselmodul pH	261
Beschaltungsbeispiele pH	262
Wechselmodul Oxy	269
Beschaltungsbeispiele Oxy	270
Beschaltungsbeispiel opt. Sensor	273
Wechselmodul Cond	274
Beschaltungsbeispiele Cond	275
Wechselmodul Condl	281
Kabelvorbereitung SE 655 / SE 656	282
Beschaltungsbeispiele Condl	283
Wechselmodul Dual-Leitfähigkeit	288
Beschaltungsbeispiele Cond-Cond	289
Digitale Sensoren: Memosens	292
Memosens-Sensor anschließen	295
Technische Daten	296
Anhang	309
Puffertabellen	309
Eingebbarer Puffersatz -U1	319
Kalibrierlösungen	322
Konzentrationsmessung	324
Konzentrationsverläufe	325
Index	330

Lieferumfang Dokumentation

Sicherheitshinweise

In EU-Landessprachen und weiteren

Werkszeugnis 2.2 gem. EN 10204

Elektronische Dokumentation auf www.knick.de

Manuals + Software

Ex-Geräte:

Control Drawings und Ex-Zertifikate

EU-Konformitätserklärungen

Bestimmungsgemäßer Gebrauch Stratos Pro A221(N/X)

Das Stratos Pro A221(N/X) ist ein 2-Leiter-Analysenmessgerät mit digitaler Kommunikation über PROFIBUS PA. Das Gerät verfügt über einen Eingang für digitale Memosens-Sensoren, der Betrieb mit analogen Sensoren wird durch wechselbare Messmodule ermöglicht. Die Hilfsenergieversorgung erfolgt über den PROFIBUS. Das **Stratos Pro A221X** kann in explosionsgefährdeten Bereichen betrieben werden. Bei der Installation in explosionsgefährdeten Bereichen die Angaben der dem Gerät beiliegenden Control Drawings befolgen.

Der Gebrauch des Produkts ist nur unter Einhaltung der festgelegten Nennbetriebsbedingungen zulässig. Diese finden Sie im Kapitel technische Daten in dieser Betriebsanleitung, siehe Seite 296.

Das robuste Kunststoffgehäuse gestattet den Schalttafeleinbau oder die Wandbzw. Mastmontage. Das optionale Schutzdach bietet einen zusätzlichen Schutz vor direkten Witterungseinflüssen und mechanischer Beschädigung.

Folgende Messverfahren sind einstellbar:

- pH-Wert
- Redox-Wert
- · Leitfähigkeit, elektrodenbehaftet (2-Elektroden/4-Elektroden)
- Leitfähigkeit, induktiv
- Sauerstoff

Mögliche Einsatzgebiete sind:

- Biotechnologie
- Chemieindustrie
- Pharmaindustrie
- Umwelttechnik
- Lebensmitteltechnik
- Kraftwerkstechnik
- Wasser/Abwasser

Bestimmungsgemäßer Gebrauch Stratos Evo A451N

Das Stratos Evo A451N ist ein 4-Leiter-Analysenmessgerät mit digitaler Kommunikation über PROFIBUS DP. Das Gerät verfügt über einen Eingang für digitale Memosens-Sensoren, der Betrieb mit analogen Sensoren wird durch wechselbare Messmodule ermöglicht. Zur Stromversorgung dient eine universelle Netzversorgung 80 ... 230 V AC, 45 ... 65 Hz / 24 ... 60 V DC. Ausgangsseitig stehen zwei frei konfigurierbare, busgesteuerte, potenzialfreie Schaltkontakte zur Verfügung. Das Gerät ermöglicht auch die Speisung und Messwertverarbeitung von zusätzlichen Messumformern z. B. zur Durchflussüberwachung.

Der Gebrauch des Produkts ist nur unter Einhaltung der festgelegten Nennbetriebsbedingungen zulässig. Diese finden Sie im Kapitel technische Daten in dieser Betriebsanleitung, siehe Seite 297.

Das robuste Kunststoffgehäuse gestattet den Schalttafeleinbau oder die Wandbzw. Mastmontage. Das optionale Schutzdach bietet einen zusätzlichen Schutz vor direkten Witterungseinflüssen und mechanischer Beschädigung.

Folgende Messverfahren sind einstellbar:

- pH-Wert
- Redox-Wert
- Leitfähigkeit, elektrodenbehaftet (2-Elektroden/4-Elektroden)
- · Leitfähigkeit, induktiv
- Sauerstoff
- Sauerstoff, optisch

Mögliche Einsatzgebiete sind:

- Biotechnologie
- Chemieindustrie
- Pharmaindustrie
- Umwelttechnik
- Lebensmitteltechnik
- Kraftwerkstechnik
- Wasser/Abwasser

Sicherheitshinweise unbedingt lesen und beachten!

Das Gerät ist nach dem Stand der Technik und den anerkannten sicherheitstechnischen Regeln gebaut.

Bei seiner Verwendung können unter Umständen dennoch Gefahren für den Benutzer bzw. Beeinträchtigungen für das Gerät entstehen.

Die Inbetriebnahme muss durch vom Betreiber autorisiertes Fachpersonal durchgeführt werden. Wenn ein gefahrloser Betrieb nicht möglich ist, dann darf das Gerät nicht eingeschaltet bzw. muss das Gerät vorschriftsmäßig ausgeschaltet und gegen unbeabsichtigten Betrieb gesichert werden.

Gründe hierfür können sein:

- Sichtbare Beschädigung des Geräts
- Ausfall der elektrischen Funktion
- Längere Lagerung bei Temperaturen unter -30 °C/-22 °F bzw. über 70 °C/158 °F
- Schwere Transportbeanspruchungen

Bevor das Gerät wieder in Betrieb genommen wird, muss eine fachgerechte Stückprüfung durchgeführt werden. Diese Prüfung soll beim Hersteller im Werk vorgenommen werden.

Betriebszustand Funktionskontrolle (HOLD-Funktion)

Nach Aufruf von Konfigurierung, Kalibrierung oder Service geht Stratos in den Betriebszustand Funktionskontrolle (HOLD).

Die Stromausgänge verhalten sich entsprechend der Konfigurierung.

Der Betrieb im Betriebszustand Funktionskontrolle (HOLD) ist nicht zulässig, da es zu einer Gefährdung der Anwender durch unerwartetes Systemverhalten kommen kann.

Nicht für den Einsatz in explosionsgefährdeten Bereichen bestimmte Geräte

Geräte mit der Kennzeichnung N im Produktnamen dürfen nicht in explosionsgefährdeten Bereichen eingesetzt werden!

Konfiguration

Der Austausch von Komponenten kann die Eigensicherheit beeinträchtigen. Bei Geräten der Serie Stratos ist ein Austausch der Module nicht vorgesehen.

Display

Klartextanzeigen im großen, hinterleuchteten LC-Display erlauben eine intuitive Bedienung. Der Anwender kann festlegen, welche Werte im Standard-Messmodus angezeigt werden sollen ("Main Display").

Farbgeleitete Nutzerführung

Durch farbige Hinterleuchtung des Displays werden verschiedene Betriebszustände signalisiert (z. B. Alarm: rot).

Diagnosefunktionen

Diagnosefunktionen bieten "Sensocheck" als automatische Überwachung der Glasund Bezugselektrode sowie "Sensoface" zur übersichtlichen Darstellung des Sensorzustandes.

Datenlogger

Das Logbuch (Audit Trail) kann bis zu 100 Einträge verwalten.

Passwortschutz

Ein Passwortschutz (Passcode) für die Vergabe von Zugriffsrechten bei der Bedienung ist konfigurierbar.

Automatische Kalibrierung mit Calimatic

Zur Wahl stehen die in der Praxis am meisten eingesetzten pH-Pufferlösungen. Ein eigener pH-Puffersatz kann zusätzlich eingegeben werden.

Türkontakt

Wenn das Gehäuse geöffnet wird, öffnet sich ein Reedkontakt und generiert automatisch einen Logbucheintrag.

Control

Eingang zur Durchflussüberwachung (potenzialfreier, digitaler Steuereingang).

Einsatzbeispiel Stratos Pro A221(N/X)

14

Überblick

Lieferumfang

Kontrollieren Sie die Lieferung auf Transportschäden und auf Vollständigkeit!

Zum Lieferumfang gehören:

Fronteinheit, Untergehäuse, Kleinteilebeutel Werksprüfzeugnis Dokumentation

Abb.: Montage der Gehäusekomponenten

- 1) Einlegebrücke (3 Stück)
- 2) Blech (1 Stück), für Conduit-Montage: Blech zwischen Gehäuse und Mutter
- 3) Kabelbinder (3 Stück)
- 4) Scharnierstift (1 Stück), von beiden Seiten steckbar
- 5) Gehäuseschrauben (4 Stück)

- 6) Blindstopfen (2 Stück, nur nicht-Ex)
- 7) Reduzierdichteinsatz (1 Stück)
- 8) Kabelverschraubungen (3 Stück)
- 9) Blindverschraubung (2 Stück)
- 10) Sechskantmuttern (5 Stück)
- 11) Kunststoffverschluss (2 Stück), zur Abdichtung bei Wandmontage

41

117

0

- 1) Kabelverschraubung (3 Stück)
- 2) Bohrungen für Kabelverschraubung oder Conduit ½",
 ø 21,5 mm (2 Bohrungen) Conduit-Verschraubungen sind nicht
 - im Lieferumfang enthalten!
- 3) Bohrungen für Mastmontage (4 Bohrungen)
- 4) Bohrungen für Wandmontage (2 Bohrungen)

Montagezubehör

Mastmontage-Satz, Zubehör ZU 0274 Schutzdach für Wand- und Mastmontage, Zubehör ZU 0737 Schalttafel-Montagesatz, Zubehör ZU 0738

16

Montageplan, Abmessungen

Wechselmodul einsetzen

Messmodule für den Anschluss analoger Sensoren: pH, Sauerstoff (Oxy), Leitfähigkeit (Cond, Condl, Cond-Cond)

Messmodule für den Anschluss analoger Sensoren werden einfach in den Modulschacht gesteckt.

Ändern des Messverfahrens

Wenn ein Messmodul getauscht wird, muss das entsprechende Messverfahren im Menü "Service" eingestellt werden.

Modul pH-Messung

Bestellnummer MK-PH015N / MK-PH015X Beschaltungsbeispiele siehe S. 262

Modul Sauerstoff-Messung Bestellnummer MK-OXY046N / MK-OXY045X

Beschaltungsbeispiele siehe S. 270

Klemmenschild Modul pH-Messung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Klemmenschild Modul Sauerstoff-Messung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Wechselmodule Leitfähigkeit

Modul Leitfähigkeitsmessung konduktiv (COND)

Bestellnummer MK-COND025N / MK-COND025X Beschaltungsbeispiele siehe S. 275

Modul Leitfähigkeitsmessung induktiv (CONDI)

Bestellnummer MK-CONDI035N / MK-CONDI035X Beschaltungsbeispiele siehe S. 281

Klemmenschild Modul COND

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

	(CONDI	Sens	or —			
1	Û	Temp	,			ш	_ ju '
	RSI		Ê	0	0	≧	≧
(9 W		ND ND	Ī	IN	ü	ü
i		Δ	ŏ	S	S	R	R
	R S	RT	Ł	Ξ	2	2	Ξ
: K	н с	E	E		C	в	
and a star Li			-	-	Ľ	–	

Klemmenschild Modul CONDI

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

20

Modul Dual-Leitfähigkeitsmessung (COND-COND)

Bestellnummer MK-CC065N Beschaltungsbeispiele siehe S. 289

Klemmenschild Dual-Leitfähigkeitsmessung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Ändern des Messverfahrens

Ein anderes Messverfahren kann jederzeit im Menü "Service" eingestellt werden.

Kalibrierung und Wartung im Labor

Die Software "MemoSuite" erlaubt das Kalibrieren von Memosens-Sensoren unter reproduzierbaren Bedingungen am PC im Labor. Die Sensor-Parameter werden in einer Datenbank erfasst. Dokumentation und Archivierung entsprechen Anforderungen gemäß FDA CFR 21 Part 11. Detaillierte Protokolle können als csv-Export für Excel ausgegeben werden. MemoSuite wird als Zubehör in den Versionen "Basic" und "Advanced" angeboten: www.knick.de.

Stratos Pro A221N / A221X

Stratos Evo A451N

ACHTUNG! Das Wechselmodul muss entfernt werden.

Klemmenbelegung A221N

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Typschild A221N

(Beispieldarstellung)

Leiterquerschnitte

Bei einem Anziehdrehmoment von 0,5 bis 0,6 Nm sind folgende Leiterquerschnitte zulässig:

Anschluss	Querschnitt
Leiterquerschnitt starr/flexibel	0,2 2,5 mm²
Leiterquerschnitt flexibel mit Aderendhülse ohne Kunststoffhülse	0,25 2,5 mm ²
Leiterquerschnitt flexibel mit Aderendhülse mit Kunststoffhülse	0,2 1,5 mm²

Klemmenbelegung A451N

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Typschild A451N

(Beispieldarstellung)

Knick >		
A451N	_	
No. 87756/0000000/1409	Power	
-20 ≤ T _a ≤ +55°C	80 (-15%) to 230 (+10%) V AC, 45 to 65 Hz, < 15 VA	
	24 (-15%) to 60 (+10%) V DC,	∧ □ (
14163 Berlin Made in Germany	10 W	

Leiterquerschnitte

Bei einem Anziehdrehmoment von 0,5 bis 0,6 Nm sind folgende Leiterquerschnitte zulässig:

Anschluss	Querschnitt
Leiterquerschnitt starr/flexibel	0,2 2,5 mm ²
Leiterquerschnitt flexibel mit Aderendhülse ohne Kunststoffhülse	0,25 2,5 mm ²
Leiterquerschnitt flexibel mit Aderendhülse mit Kunststoffhülse	0,2 1,5 mm²

Signalbelegung A221(N/X)

	Ansatzflächen zum Abziehen der Anschlussklemmen				ung: ussklemmen, Gerät et, Rückseite der inheit
Kler	nmenreihe 1		Klei	nmenreihe 2	
1	+3V 2		10	PA (IEC 61158-2)	<u>+</u> 4
2	RS 485 A		11	PA (IEC 61158-2)	SCF JSF
3	RS 485 B		12	Shield	BL
4	GND/Shield Š		13	n. c.	
5	n. c.	_	14	n. c.	
6	n. c.	_	15	n. c.	
7	Potenzialausgleich	_	16	n. c.	
8	Control	_	17	n. c.	
9	Control		18	n. c.	

Anschluss Memosens-Sensor

Der Memosens-Sensor wird an die RS-485-Schnittstelle des Messgerätes angeschlossen. Anschließend wählen Sie das Messverfahren. (Das Messverfahren können Sie bei späterem Wechsel auf einen anderen Sensortyp im Menü "Service" ändern.) Nach der Auswahl des Sensortyps im Menü Konfiguration werden die Kalibrierdaten aus dem Sensor ausgelesen und zur Berechnung des Messwertes herangezogen.

26 Stromversorgung, Signalbelegung A451N

Stromversorgung

Anschluss der Stromversorgung an die Klemmen 21 und 22 (24 ... 230 V AC, 45 ... 65 Hz / 24 ... 80 V DC)

22

Power

Messverfahren wählen

Bei der Erstinbetriebnahme erkennt das Messgerät ein gestecktes Modul automatisch, die Software wird an die ermittelte Messgröße angepasst. Wenn ein Messmodul getauscht wird, muss das Messverfahren im Menü "Service" eingestellt werden.

Ändern des Messverfahrens

Ein anderes Messverfahren kann jederzeit im Menü "Service" eingestellt werden.

Betriebsart Messen

Voraussetzung: Ein Memosens-Sensor ist angeschlossen bzw. ein Messmodul mit angeschlossenem konventionellen Sensor gesteckt.

Nach Zuschalten der Betriebsspannung geht das Gerät automatisch in die Betriebsart "Messen". Aufruf der Betriebsart Messen aus einer anderen Betriebsart heraus (z. B. Diagnose, Service): Taste **meas** lang drücken (> 2 s).

Je nach Konfiguration können Sie folgende Anzeigen als Standard-Display für die Betriebsart "Messen" einstellen:

- Messwert, Uhrzeit sowie Temperatur (Voreinstellung)
- Messwert
- Uhrzeit und Datum

Hinweis: Durch Drücken der Taste **meas** in der Betriebsart Messen lassen sich die Displaydarstellungen temporär für ca. 60 s einblenden.

Achtung:

Um das Gerät an die Messaufgabe anzupassen, muss es konfiguriert werden!

Tastatur

Pfeiltasten auf / ab

- Menü: Ziffernwert erhöhen / verringern
- Menü: Auswahl

Pfeiltasten links / rechts

- Menü: vorherige/nächste Menügruppe
- Zahleneingabe: Stelle nach links/ rechts
- Informationen abrufen
- Fehlermeldungen anzeigen

menu

 Messmodus: Menü aufrufen

meas

- Im Menü eine Ebene zurück
- Direkt in den Messmodus
 (> 2 s drücken)
- Messmodus: andere Displaydarstellung

enter

- Konfigurierung: Eingaben bestätigen, nächster Konfigurierschritt
- Kalibrierung: weiter im Programmablauf

30

Signalfarben (Displayhinterleuchtung)

rot	Alarm (im Fehlerfall: blinkende Anzeigewerte)
rot blinkend	Fehleingabe: unzulässiger Wert bzw. falscher Passcode
gelb	Konfigurierung, Kalibrierung, Service
türkis	Diagnose
grün	Info
magenta	Sensoface-Meldung

Die farbgeleitete Nutzerführung garantiert eine erhöhte Bedienungssicherheit und signalisiert Betriebszustände besonders deutlich.

Der normale Messmodus ist weiß hinterleuchtet, während Anzeigen im Informationsmodus grün und das Diagnosemenü türkis erscheinen. Das Gelb für Konfigurierung, Kalibrierung und Service ist ebenso weithin sichtbar wie der Magenta-Farbton zur optischen Unterstreichung von Asset-Management-Meldungen für die vorausschauende Diagnostik – wie z. B. Wartungsbedarf, Voralarm und Sensorverschleiß. Der Alarmstatus selbst weist eine besonders auffallende rote Displayfarbe auf und wird auch noch durch blinkende Anzeigewerte signalisiert. Unzulässige Eingaben oder falsche Passzahlen lassen das gesamte Display rot blinken, so dass Bedienfehler deutlich reduziert werden.

weiß: Messmodus

rot blinkend: Alarm, Fehler

gelb: Konfigurierung, Kalibrierung, Service

magenta: Wartungsbedarf

türkis: Diagnose

grün: Info-Texte

Diagnose (DIAG)

Anzeige der Kalibrierdaten, Anzeige der Sensordaten, Sensormonitor, Durchführung eines Geräteselbsttests, Abruf der Logbuch-Einträge und Anzeige der Hard-/Softwareversion der einzelnen Komponenten. Das Logbuch kann 100 Einträge erfassen (00...99), sie sind direkt am Gerät einsehbar.

Kalibrierung (CAL)

Jeder Sensor verfügt über typische Kenngrößen, die sich im Lauf der Betriebszeit ändern. Um einen korrekten Messwert liefern zu können, ist eine Kalibrierung erforderlich. Dabei prüft das Gerät, welchen Wert der Sensor bei Messung in einem bekannten Medium liefert. Wenn eine Abweichung besteht, dann kann das Gerät "justiert" werden. In diesem Fall zeigt das Gerät den "tatsächlichen" Wert an und korrigiert intern den Messfehler des Sensors. Die Kalibrierung muss zyklisch wiederholt werden. Die Zeitabstände zwischen den Kalibrierzyklen richten sich nach der Belastung des Sensors.

Bei der Kalibrierung bleibt das Gerät im Kalibriermodus, bis dieser durch den Bediener verlassen wird.

Konfigurierung (CONF)

Um das Gerät an die Messaufgabe anzupassen, muss es konfiguriert werden. In der Betriebsart "Konfigurierung" wird eingestellt, welches Messverfahren gewählt und welcher Sensor angeschlossen wurde, welcher Messbereich übertragen werden soll und wann Warn- bzw. Alarmmeldungen erfolgen sollen.

Der Konfiguriermodus wird automatisch 20 Minuten nach der letzten Tastenbetätigung verlassen. Das Gerät geht in den Messmodus.

Service (SERVICE)

Passcodes vergeben, Auswahl Gerätetyp (pH/Oxy/Leitfähigkeit), zurückstellen auf Werkseinstellungen.

Betriebsart wählen:

- 1) Taste meas lang (> 2 s) drücken (Betriebsart Messen)
- 2) Taste menu drücken das Auswahlmenü erscheint
- 3) Betriebsart mittels Pfeiltasten links / rechts wählen
- 4) Gewählte Betriebsart mit enter bestätigen

Werte eingeben

Werte eingeben:

- 5) Ziffernposition auswählen: Pfeiltaste links / rechts
- 6) Zahlenwert ändern: Pfeiltaste auf / ab
- 7) Eingabe bestätigen mit enter

Alarm

Bei Auftreten eines Fehlers erfolgt sofort die Anzeige Err im Display.

Erst nach Ablauf einer parametrierbaren Verzögerungszeit wird der Alarm registriert und ein Logbucheintrag erzeugt.

Bei Alarm blinkt das Display des Geräts, die Farbe der Displayhinterleuchtung wechselt auf **rot**. Nach dem Wegfall eines Fehlerereignisses wird der Alarmzustand nach ca. 2 s gelöscht.

36
Übersicht Menü

	meas	Anzeige CLK meas	
Messmodus (Hauptdisplay	-	→ nach 60 s	
, wallbal)	Drücken der Taste menu (Pfeiltaste unten) führt zum Auswahlmenü. Mithilfe der Pfeiltasten rechts / links erfolgt die Auswahl der Menügruppe. Öffnen der Menüpunkte mit enter . Zurück mit meas .		
DIAG	CALDATA	Anzeige der Kalibrierdaten	
	SENSOR Anzeige der Sensorkenndaten		
	SELFTEST	Selbsttest: RAM, ROM, EEPROM, Modul	
	LOGBOOK	100 Ereignisse mit Datum und Uhrzeit (Audit-Trail)	
	MONITOR	Anzeige der direkten Sensorwerte	
	VERSION	Anzeige von Software-Version, Gerätetyp und Seriennummer	
•			
CAL	рН	Justierung pH / Justierung ORP / Produktkalibrierung	
	Оху	Justierung (WTR/AIR) / Justage Nullpunkt / ProdKal.	
	Cond(I)	Justierung mit Lösung / Eingabe Zellfaktor / ProdKal.	
	CAL_RTD	Abgleich des Temperaturfühlers	
•			
CONF	рН	Konfigurierung pH-Sensor/ORP-Sensor	
	Cond	Konfigurierung Cond-Sensor	
	Condl	Konfigurierung Condl-Sensor	
	Оху	Konfigurierung Oxy-Sensor	
	Cond-Cond	Konfigurierung 2x Cond-Sensor	
•			
SERVICE	SENSOR	Sensor (Rückstellung von Diagnosemeldungen)	
Code "5555" (änderbar)	DEVICE TYPE	Auswahl Messgröße	
(anderbar)	NEW EXCHANGER	Rücksetzen der Verbrauchsberechnung des Ionentauschers	
	MONITOR	Anzeige der Messwerte für Validierungszwecke (Simulatoren)	
	POWER OUT	Wahl der Ausgangsspannung (nur A451N)	
	CODES	Konfigurierung der Passcodes	
	DEFAULT	Rücksetzung auf Werkseinstellungen	

Schritt	Aktion/Display	Bemerkung
Sensor anstecken.	● ● ● ● ₽H ● NO SENSOR	Bevor ein Memosens-Sensor angeschlossen wird, erscheint die Fehlermeldung "NO SENSOR" im Display
Warten, bis die Sen- sordaten angezeigt werden.	SEAS R I DENTIFICATION	Die Sanduhr blinkt im Display.
Sensordaten prüfen.	SEASCRETE MEMOSENS ■ Mit Pfeiltasten ← Sen- sorinformationen anzei- gen, mit enter bestätigen.	Sensoface ist freundlich, wenn die Sensordaten in Ordnung sind.
In den Messmodus gehen.	Taste meas, info oder enter drücken	Nach 60 s geht das Gerät auto- matisch in den Messmodus (timeout).
Mögliche Fehlermeldung		
Sensor verschlissen. Sensor tauschen.	€ CANCELEJ SENSO	Wenn diese Fehlermeldung erscheint, kann der Sensor nicht mehr verwendet werden. Sensoface ist traurig.
Sensor defekt. Sensor tauschen.	é Sensor frilure	Wenn diese Fehlermeldung erscheint, kann der Sensor nicht verwendet werden. Sensoface ist traurig.

Schritt	Aktion/Display	Bemerkung
Alten Sensor abziehen und ausbauen.		
Neuen Sensor einbauen und anstecken.		Temporäre Meldungen, die beim Wechsel entste- hen, werden im Display angezeigt, aber nicht in das Logbuch eingetragen.
Warten, bis die Sensor- daten angezeigt werden.	SEAS OR	
Sensordaten prüfen.	WEMDSENS → MEMDSENS → Mit Pfeiltasten ↓ > Sen- sorinformationen anzei- gen, mit enter bestätigen.	Sensorhersteller und -typ, Seriennummer und letz- tes Kalibrierdatum kön- nen angezeigt werden.
Messwerte kontrollieren.		

40

рΗ

Konfi	nfigurierung pH		Auswahl	DEFAULT-Werte fett	
BUS:	ADDRESS		0000 0126		
SNS:	: 5		STANDARD ISFE	T MEMOSENS	
				PFAUDLER ISM	
	MEAS	MODE		pH mV ORP	
	RTD TY	ΈΕ		100 PT 1000 PT	30 NTC 8.55 NTC
	(STAND	ARD, ISF	ET, PFAUDLER)	BALCO	
	TEMP U	JNIT		°C °F	
	TEMP I	MEAS		AUTO MAN BUS	
	MAN			-50 250 °C (02	25.0 °C)
				-58 482 °F (07	′ 7.0 °F)
	TEMP O	CAL		AUTO MAN BUS	
	MAN			-50 250 °C (02	25.0 °C)
				-58 482 °F (07	′7.0 °F)
	NOM ZERO ¹⁾		0.00 14.00 PH	(7.00 PH)	
	NOM S	LOPE 1)		30.0 60.0 mV	(059.2 mV)
	PH_ISO ¹⁾		0.00 14.00 PH	(07.00 PH)	
	CALMODE		AUTO MAN DAT		
	AUTO BUFFER SET -		-01- MT		
				-03- CIB	
				-04- NST	
				-05- STD	
				-06- HCH	
				-07- WTW -08- HMT	
				-09- RGC	
				-10- DIN	
	CAL TIMER ²⁾		-U1- USR		
			OFF FIX AdAPT		
	FIX	AdAPT	CAL-CYCLE ²⁾	xxxx h (0168 h)	
	ACT ³⁾			OFF AUTO MAN	
	MAN		ACT CYCLE ³⁾	02000 DAY (C	0007 DAY)
	TTM ³⁾		OFF AUTO MAN)	
	MAN		TTM CYCLE 3)	02000 DAY (C	030 DAY)

Übersicht Konfigurierung pH

pН	
----	--

Konfigurierung pH		н	Auswahl DEFAULT-Werte fett
SNS:	NS: CIP COUNT		ON OFF
	ON	CIP CYCLES ³⁾	0 9999 CYC (0000 CYC)
	SIP COUNT		ON OFF
	ON	SIP CYCLES ³⁾	0 9999 CYC (0000 CYC)
			ON OFF
	ON	AC CYCLES ³⁾	xxxx CYC (0000 CYC)
COR:	TC SELECT		OFF LIN PURE WTR USER TAB
	LIN	TC LIQUID	-19.99 +19.99 %/K (00.00 %/K)
	USER TAB	EDIT TABLE	NO YES
		YES	0 100 °C in 5 °C-Schritten
IN:	FLOW ADJUST		0 20 000 l/L (12 000 l/L)
ALA:	ALARM DELAY	,	0 600 SEC (010 SEC)
	SENSOCHECK		ON OFF
	HOLD		OFF LAST
CLK:	CLK FORMAT		24h 12h
	CLK TIME		hh:mm hh.mm (A/M) (00.00)
	CLK DAY/MONTH		dd.mm (01.01.)
	CLK YEAR		уууу (2014)

¹⁾ nur bei PFAUDLER-Sensoren

²⁾ entfällt bei ISM-Sensoren

³⁾ nur bei ISM-Sensoren

42

Kopiervorlage Konfigurierung pH

рΗ

Parameter		Defaultwert	Eingestellter Wert
BUS:	Adresse	126	
	Sensortyp	STANDARD	
	Messmodus	рН	
	Temperaturfühlertyp	1000 PT	
	Temperatureinheit	°C	
	Temperatur Messung	AUTO	
	Temperatur Messung manuell	25.0 °C (77.0 °F)	
	Temperatur Kalibrierung	AUTO	
	Temperatur Kalibrierung manuell	25.0 °C (77.0 °F)	
	Nullpunkt ¹⁾	7.00 pH	
	Steilheit ¹⁾	59.2 mV	
	PH ISO ¹⁾	7.00 pH	
SNS:	Kalibriermodus	AUTO	
	Puffersatz	-02- KNC (Knick)	
	Kalibriertimer ²⁾	OFF	
	Kalibrierzyklus	168 h	
	Adaptiver Kalibriertimer (ACT) ³⁾	OFF	
	Kalibrierzyklus (ACT) ³⁾	30 DAY	
	Adaptiver Wartungstimer (TTM) ³⁾	OFF	
	Wartungszyklus (TTM) ³⁾	365 DAY	
	CIP-Zähler	OFF	
	CIP-Zyklen	0000 CYC	
	SIP-Zähler	OFF	
	SIP-Zyklen	0000 CYC	
	Autoklavierzähler ³⁾	OFF	
	Autoklavierzyklen ³⁾	0000 CYC	

Kopiervorlage Konfigurierung pH

рΗ

Param	neter	Defaultwert	Eingestellter Wert
	Temperaturkompensation	OFF	
COR:	Temperaturkompensation LINEAR	00.00%/K	
	Temperaturkompensation Benutzer	NO	
IN:	Durchflussmesser (Impulse/Liter)	12 000 l/L	
	Durchflussmesser (Erfassungsintervall)	1 s	
	Verzögerungszeit	10 s	
ALA:	Sensocheck	OFF	
	HOLD-Zustand	LAST	
	Zeitformat	24h	
CLK:	Zeit hh/mm	00.00	
	Tag/Monat	01.01.	
	Jahr	2014	

¹⁾ nur bei PFAUDLER-Sensoren

- ²⁾ entfällt bei ISM-Sensoren
- ³⁾ nur bei ISM-Sensoren

44

рΗ

enter

Konfigurierung pH

Gerätetyp pH

Gesteckte Module werden automatisch erkannt. Der Gerätetyp kann im Menü SERVICE geändert werden, der Kalibriermodus muss anschließend im Menü CONF eingestellt werden.

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- **4** Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

рΗ

3			рп
Menüpunkt	Aktion	Auswa	hl
PROFIBUS-Adresse	Mit Pfeiltasten ▲ ✓ Wert verän- dern, mit Pfeiltasten ↓ andere Stelle auswählen. Übernehmen mit enter Hinweis: Bei aktiver Kommunikation kann die PROFIBUS-Adresse nicht verän- dert werden.	0000 0126	
Sensortyp	Mit Pfeiltasten ▲ ▼ verwendeten Sensortyp aus- wählen. Übernehmen mit enter	STANDARD ISFET MEMOSENS PFAUDLER ISM	
Messmodus PH SNS: MERS MDJE	Mit Pfeiltasten ▲ ▼ Messmodus auswählen. Übernehmen mit enter	pH mV ORP	
Temperaturfühlertyp	 (nicht bei digitalen Sensoren) Mit Pfeiltasten ▲ ✓ verwendeten Temperaturfühlertyp auswählen. Übernehmen mit enter 	100 PT 1000 PT 30 NTC 8.55 NTC BALCO	
Temperatureinheit	Mit Pfeiltasten ▲ ▼ °C oder °F wählen. Übernehmen mit enter	° C °F	

рΗ

Sensor, Temperaturerfassung bei Kalibrierung, Kalibriermodus

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

рΗ

3		
Menüpunkt	Aktion	Auswahl
Temperaturerfassung bei Messung	Mit Pfeiltasten ▲ ▼ Modus aus- wählen: AUTO: Erfassung über Sensor MAN: direkte Eingabe der Temp., keine Erfassung (s. nächster Schritt) BUS: Wert aus AO Block Übernehmen mit enter	AUTO MAN BUS
(Manuelle Temperatur)	Mit Pfeiltasten ▲ Wert ver- ändern, mit Pfeiltasten andere Stelle auswählen. Übernehmen mit enter	−50250 °C (25.0 °C) (−58482 °F) (77.0 °F)
Temperaturerfassung bei Kalibrierung	AUTO: Erfassung über Sensor MAN: direkte Eingabe der Temp., keine Erfassung (s. nächster Schritt) BUS: Wert vom AO-Block Übernehmen mit enter	AUTO MAN BUS
(Manuelle Temperatur)	siehe oben	
Kalibriermodus	Mit Pfeiltasten ▲ ✓ CALMODE auswählen: AUTO: Kalibrierung mit Puffersatz-Erkennung Calimatic MAN: Manuelle Vorgabe der Pufferlösungen DAT: Eingabe Justierdaten vor- gemessener Sensoren Übernehmen mit enter	AUTO MAN DAT
(AUTO: Puffersatz) - III - KN SNG: BUFFER SET - IIIFER SET	Mit Pfeiltasten A Verwen- deten Puffersatz auswählen (Nennwerte s. Tabellen) Übernehmen mit enter	-0110-, -U1- (siehe Anhang) Mit Taste info werden in der unteren Zeile Hersteller und Nennwerte angezeigt.

рΗ

Sensor, Kalibriertimer, Kalibrierzyklus

1

Taste menu drücken.

- enter drücken.
 3 Mit Pfeiltasten ▲ ▼ () PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
- Bestätigen (und weiter) mit enter.
 Beenden: Taste meas drücken, bis der Statusbalken [meas] im Display erscheint.

рΗ

3		
Menüpunkt	Aktion	Auswahl
Kalibriertimer	Mit Pfeiltasten ▲ CALTIMER einstellen: OFF: kein Timer FIX: fester Kalibrierzyklus (ein- stellen im nächsten Schritt) AdAPT: maximaler Kalibrierzyklus (einstellen im nächsten Schritt) Übernehmen mit enter	OFF FIX AdAPT In der Einstellung ADAPT automatische Verkürzung des Kalibrierzyklus in Abhängigkeit der Sensorbelastung (hohe Temperaturen und pH-Werte) und bei digitalen Sensoren auch des Sensorverschleißes
Kalibrierzyklus	Nur bei FIX/ADAPT: Mit Pfeiltasten ▲ Wert ver- ändern, mit Pfeiltasten → andere Stelle auswählen. Übernehmen mit enter	0 9999

Hinweise zum Kalibriertimer:

Wenn Sensocheck aktiviert ist, wird der Ablauf des Kalibrierintervalls durch Sensoface im Display angezeigt:

Display		lay	Status
ğ	+	:	Über 80% des Kalibrierintervalls sind bereits abgelau- fen.
X	+	:	Das Kalibrierintervall ist überschritten.

Die verbleibende Zeit bis zur nächsten Kalibrierung kann in der Diagnose abgefragt werden (siehe Abschnitt Diagnose, ab Seite 156).

рΗ

ISM-Sensor, Adaptiver Kalibriertimer (ACT)

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

pН

Adaptiver Kalibriertimer (ACT)

Der adaptive Kalibriertimer erinnert über eine Sensoface-Meldung an die erforderliche Kalibrierung des Sensors. Sobald das Intervall abgelaufen ist, wird Sensoface "traurig".

Der mit der **info**-Taste abrufbare Text "OUT OF CAL TIME CALIBRATE SENSOR" verweist auf die Ursache für die Sensoface-Meldung und erinnert so an die erforderliche Kalibrierung. Das ACT-Intervall kann entweder automatisch aus den Werkseinstellungen des Sensors ausgelesen werden oder wird manuell vorgegeben (max. 9999 Tage). Stressende Einflüsse (Temperatur, Messung in Extrembereichen) verkürzen das Timerintervall.

Mit einer Kalibrierung wird der adaptive Kalibriertimer wieder auf den Anfangswert gesetzt.

3		
Menüpunkt	Aktion	Auswahl
Adaptiver Kalibrier- timer (ACT)	Wahl mit Pfeiltasten ▲ ▼ : OFF: kein Timer AUTO: Übernahme des im ISM-	OFF AUTO MAN
SNS: AET SNS: AET SNS: AET CYCLE	Sensor abgelegten Intervalls MAN: Manuelle Vorgabe des Intervalls (0 9999 Tage) Default ACT CYCLE = 7 Tage Übernehmen mit enter	

рΗ

ISM-Sensor, Adaptiver Wartungstimer (TTM)

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

ਵਾ

53

Adaptiver Wartungstimer (TTM, Time to Maintenance)

Der adaptive Wartungstimer erinnert über eine Sensoface-Meldung an die erforderliche Wartung des Sensors. Sobald das Intervall abgelaufen ist, wird Sensoface "traurig". Der mit der **info**-Taste abrufbare Text "OUT OF MAINTENANCE CLEAN SENSOR" verweist auf die Ursache für die Sensoface-Meldung und erinnert so an die erforderliche Sensorwartung. Das TTM-Intervall kann entweder automatisch aus den Werkseinstellungen des Sensors ausgelesen werden oder wird manuell vorgegeben (max. 2000 Tage).

Stressende Einflüsse (Temperatur, Messung in Extrembereichen) verkürzen das Timerintervall.

3			
Menüpunkt	Aktion	Auswahl	
Adaptiver Wartungs- timer (TTM)	Wahl mit Pfeiltasten ▲ ▼ : OFF: kein Timer AUTO: Übernahme des im ISM- Sensor abgelegten Intervalls, MAN: Manuelle Vorgabe des Intervalls (0 2000 Tage) Default TTM Cycle = 30 Tage Übernehmen mit enter	OFF AUTO MAN	
Zurückgesetzt werden kann der adaptive Wartungstimer im Menü SERVICE / SENSOR / TTM. Das Intervall wird hierbei auf den Anfangswert zurückgesetzt.			
	Erforderlich ist dazu die Auswahl von "TTM RESET = YES" mit abschließender Bestätigung durch enter .	NO YES	

рΗ

Sensor, CIP-/ SIP-Zyklen

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

рΗ

55

3		
Menüpunkt	Aktion	Auswahl
Reinigungszyklen CIP	Mit Pfeiltasten ▲ ON oder OFF auswählen.	ON OFF
SNS: CIP COUNT	Wenn eingeschaltet, werden die Zyklen im Logbuch eingetragen, aber nicht gezählt. Übernehmen mit enter	
Sterilisierungszyklen SIP	Mit Pfeiltasten ▲ ▼ ON oder OFF auswählen.	ON OFF
Un SNS: <u>SIP</u> COUNT_	Wenn eingeschaltet, werden die Zyklen im Logbuch eingetragen, aber nicht gezählt.	
	Übernehmen mit enter	

Das Registrieren von Reinigungs- und Sterilisierungszyklen bei eingebautem Sensor trägt zur Messung der Belastung des Sensors bei.

Praktikabel bei Bioanwendungen (Prozesstemperatur ca. 0 ... 50 °C,

CIP-Temperatur > 55 °C, SIP-Temperatur > 115 °C).

рΗ

ISM-Sensor, Autoklavierzähler

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Autoklavierzähler

Der Autoklavierzähler generiert bei Ablauf des vorgegebenen Grenzwerts eine Sensoface-Meldung. Sobald der vorgegebene Zählerstand für den Autoklavierzähler erreicht ist, wird Sensoface "traurig". Der mit der **info**-Taste abrufbare Text "AUTOCLAVE CYCLES OVERRUN" verweist auf die Ursache für die Sensoface-Meldung und erinnert so an das Erreichen der für den Sensor maximal erlaubten Autoklavierzyklen. Dazu muss der Autoklavierzähler manuell am Gerät nach jeder Autoklavierung im Servicemenü SENSOR inkrementiert werden. Das Gerät liefert die Rückmeldung "INCREMENT AUTOCLAVE CYCLE".

Menüpunkt	Aktion	Auswahl	
Autoklavierzähler	Wahl mit Pfeiltasten ▲ ▼ : OFF: kein Timer ON: Manuelle Vorgabe der Zyklen (0 9999) Übernehmen mit enter	OFF ON	
lst der Autoklavierzähler eingeschaltet, muss der Zählerstand nach jeder Autokla- vierung im Menü SERVICE/SENSOR/AUTOCLAVE inkrementiert werden:			

Autoklavierzähler inkre- mentieren (Menü SERVICE)	Nach der Autoklavierung muss der Zählerstand des Autoklavierzählers im Menü SERVICE / SENSOR/ AUTOCLAVE	NO / YES
	inkrementiert werden. Erforderlich ist dazu die Auswahl von " YES " mit Bestätigung durch enter .	

рΗ

Temperaturkompensation des Messmediums (pH)

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

рΗ

3			- P11
Menüpunkt	Aktion	Auswa	hl
Temperaturkompensation Messmedium	Nur bei pH-Messung: Auswahl der Temperaturkompensation des Messmediums: OFF: keine Kompensation LIN: lineare Kompensation PURE WTR: Reinstwasser USER TAB: Benutzertabelle Auswahl mit Tasten $ \leftarrow $, übernehmen mit enter	OFF LIN PURE WTR USER TAB	
Temperaturkompensation Linear	Nur bei LIN: Eingabe der linearen Temperaturkompensation des Messmediums. Mit Pfeiltasten A Wert eingeben. Übernehmen mit enter	–19.99+19.99 %	/K
Temperaturkompensation	Nur bei USER TAB: 0 100 °C in 5 °C-Schritten	NO YES	

рН

Unterstützung von Pfaudler-Sensoren

oder pH-Sensoren mit von 7 abweichendem Nullpunkt und/oder Steilheit, z. B. pH-Sensoren mit Nullpunkt bei pH 4,6

Pfaudler-Sensoren werden im Konfigurationsmenü pH ausgewählt (siehe Seite 44). Für Pfaudler Standard-pH-Sensoren können ein nomineller Nullpunkt und eine nominelle Steilheit vorgegeben werden.

Außerdem kann ein pHiso-Wert eingegeben werden.

Im Menü KONFIGURIERUNG SENSOR erscheinen die zusätzlichen Einträge:

SNS: NOM ZERO (0.00 ... 14.00 pH, Vorgabewert: 07.00 pH) SNS: NOM SLOPE (30.0 ... 60.0 mV, Vorgabewert: 59.2 mV) SNS: PH_ISO (0.00 ... 14.00 pH, Vorgabewert: 07.00 pH)

Vor der Messung sind die vom Hersteller des Sensors mitgelieferten Daten für den nominellen Nullpunkt, die nominelle Steilheit und den Isothermenschnittpunkt pHiso einzugeben und eine Kalibrierung mit geeigneten Pufferlösungen ist durchzuführen.

Bei Anschluss eines Memosens Pfaudler-Sensors werden die Daten aus dem Sensor ausgelesen bzw. sind auf Standardwerte gesetzt, Menüeingaben sind nicht erforderlich und sind daher unterdrückt.

Die nominellen Werte ZERO/SLOPE dienen dazu, dass die Sensorüberwachungs- und Kalibriereinrichtungen (Sensoface, Calimatic) bestimmungsgemäß arbeiten können, sie ersetzen nicht die Justierung (Kalibrierung)!

Typische Werte				
Sonde	Pfaudler Email-Sonden (Angaben Pfaudler)	Sonden mit abso- luter pH-Mess- methode und Bezugssystem Ag/AgCl	Sonden mit abso- luter pH-Mess- methode und Bezugssystem AgA (Silberacetat)	pH-Differential- sonde
nom. Steilheit	55 mV/pH	55 mV/pH	55 mV/pH	55 mV/pH
nom. Nullpunkt	pH 8,65	pH 8,65	pH 1,35	рН 7 12
pHiso	pH 1,35	pH 1,35	pH 1,35	pH 3,00

Hinweis:

Weitere Informationen zur Funktion, Montage, Kalibrierung, Parametrierung entnehmen Sie bitte der Betriebsanleitung des entsprechenden Sensors. 62

Cond

S
S

Übersicht Konfigurierung Cond

Cond

Konf	igurierung Cond	Auswahl DEFAULT-Werte fett
ALA: ALARM DELAY		0 600 SEC (010 SEC)
	SENSOCHECK	ON OFF
	HOLD	OFF LAST
CLK:	CLK FORMAT	24h 12h
	CLK TIME	hh:mm hh.mm (A/M) (00.00)
	CLK DAY/MONTH	dd.mm (01.01.)
	CLK YEAR	уууу (2014)

¹⁾ entfällt bei Memosens-Sensoren

²⁾ nur wenn MEAS MODE = TDS

³⁾ nur wenn MEAS MODE = USP

64

Kopiervorlage Konfigurierung Cond

Cond

Parameter		Defaultwert	Eingestellter Wert
BUS:	Adresse	126	
	Sensortyp	2-ELECTRODE	
	Zellfaktor ¹⁾	01.0000 c	
	Messmodus	Cond	
	Messbereich Cond	000.0 mS/cm	
	Konzentrationsbestimmung	-01- (NaCL)	
	Temperatureinheit	°C	
SNS:	Temperatur Messung	AUTO	
	Temperaturfühlertyp ¹⁾	1000 PT	
	Temperatur Messung manuell	25.0 °C (77.0 °F)	
	Temperatur Kalibrierung	AUTO	
	Temperatur Kalibrierung manuell	25.0 °C (77.0 °F)	
	CIP-Zähler	OFF	
	SIP-Zähler	OFF	
	Temperaturkompensation	OFF	
	Temperaturkompensation LINEAR	00.00%/K	
COR:	Referenztemperatur LINEAR	25.0 °C (77.0 °F)	
	TDS-Faktor ²⁾	1.00	
	USP-Faktor ³⁾	100.0 %	
IN:	Durchflussmesser (Impulse /Liter)	12 000 l/L	
	Durchflussmesser (Erfassungsintervall)	1 s	
	Verzögerungszeit	10 s	
ALA:	Sensocheck	OFF	
	HOLD-Zustand	LAST	
	Zeitformat	24h	
CLV.	Zeit hh/mm	00.00	
CLN.	Tag/Monat	01.01.	
	Jahr	2014	

¹⁾ entfällt bei Memosens-Sensoren ²⁾ wenn MEAS MODE = TDS

³⁾ wenn MEAS MODE = USP

Kopiervorlage Konfigurierung Cond

Cond

Cond

66

Konfigurierung Cond

Gerätetyp Cond

Gesteckte Module werden automatisch erkannt. Der Gerätetyp kann im Menü SERVICE geändert werden, der Kalibriermodus muss anschließend im Menü CONF eingestellt werden.

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- **4** Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

3

PROFIBUS-Adresse

Sensortyp

Eingabe Zellfaktor

Messmodus

Messbereich Cond

Konzentrationsbestimmung Conc

Temperatureinheit

Temperaturerfassung

Temperaturfühlertyp

Reinigungszyklen CIP

Sterilisierungszyklen SIP

Temperaturkompensation

Cond

3			
Menüpunkt	Aktion	Auswahl	
PROFIBUS-Adresse	Mit Pfeiltasten ▲ Wert verän- dern, mit Pfeiltasten andere Stelle auswählen. Übernehmen mit enter Hinweis: Bei aktiver Kommunikation (Symbol) kann die PROFIBUS-Adresse nicht ver- ändert werden.	0000 0126	
Sensortyp	Mit Pfeiltasten ▲ ▼ verwendeten Sensortyp aus- wählen. Übernehmen mit enter	2-ELECTRODE 4-ELECTRODE MEMOSENS	
Zellfaktor	Mit Pfeiltasten ▲ Wert ver- ändern, mit Pfeiltasten andere Stelle auswählen. Übernehmen mit enter	00.0050 19.9999 c (01.0000 c)	
Messmodus	Mit Pfeiltasten ▲ ▼ gewünsch- ten Messmodus auswählen. Übernehmen mit enter	Cond Conc % Sal ‰ USP μS/cm TDS	
Messbereich Cond	nur bei Cond-Messung Mit Pfeiltasten ▲	x.xxx μS/cm, xx.xx μS/c xxx.x μS/cm, xxxx μS/c x.xxx mS/cm, xx.xx mS/ xxx.x mS/cm , x.xxx S/ xx.xx S/m, xx.xx MΩ	cm cm ứcm m

Cond

68

Sensor, Konzentrationsbestimmung

Menüpunkt	Aktion	Auswahl
onzentrationsbestimmung	Nur bei Conc-Messung	-01- (NaCl), -02- (HCl), -03- (NaOH), -04- (H_SO.),
	Mit Pfeiltasten ▲	-05- (HNO ₃), -06- (H ₂ SO ₄), -07- (HCl), -08- (HNO ₃), -09- (H ₂ SO ₄), -10- (NaOH), -U1-
conf	Übernehmen mit enter	

Für eine kundenspezifische Lösung können 5 Konzentrationswerte in einer Matrix mit 5 vorzugebenden Temperaturwerten 1 ... 5 eingegeben werden. Dazu werden zuerst die 5 Temperaturwerte eingegeben, anschließend die zugehörigen Leitfähigkeitswerte für jede der Konzentrationen 1 ... 5. Diese Lösungen stehen dann zusätzlich zu den fest vorgegebenen Standard-Lösungen unter der Bezeichnung "U1" zur Verfügung.

Bestätigen mit enter	
Mit Pfeiltasten ▲ ▼ ◀ ▶ Temperaturwerte 1 5 einge- ben. Übernehmen mit enter	Eingabebereich: -50250 °C / -58482 °F
Mit Pfeiltasten ▲ ▼ () Konzentrationswert 1 eingeben. Übernehmen mit enter	
Für Konzentrationswert 1: Mit Pfeiltasten ▲ ▼ () Leitfähigkeitswerte für Temperaturen 1 5 eingeben. Übernehmen mit enter	

Cond

Sensor, Temperatureinheit, Temperaturerfassung, Temperaturfühlertyp

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Cond

3		
Menüpunkt	Aktion	Auswahl
Temperatureinheit	Mit Pfeiltasten ▲ ▼ °C oder °F wählen. Übernehmen mit enter	°C / °F
	Mit Pfeiltasten ▲ ▼ Modus auswählen: AUTO: Erfassung über Sensor MAN: direkte Eingabe der Temp., keine Erfassung (s. nächster Schritt) BUS: Wert aus AO Block Übernehmen mit enter	AUTO MAN BUS
Temperaturfühlertyp	 (nicht bei Memosens) Mit Pfeiltasten ▲ ✓ verwendeten Temperaturfühlertyp auswählen. Übernehmen mit enter 	100 PT 1000 PT 100 Ni 8.55 NTC 30 NTC
(Manuell Temperatur)	Mit Pfeiltasten ▲ Wert ver- ändern, mit Pfeiltasten andere Stelle auswählen. Übernehmen mit enter	–50250 °C (25.0 °C) (–58482 °F) (77.0 °F)

Cond

72

Sensor, CIP- / SIP-Zyklen

enter

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

73 Cond

3		
Menüpunkt	Aktion	Auswahl
CIP Reinigungszyklen ein/aus	Mit Pfeiltasten ▲ ON oder OFF auswählen. Schaltet die Protokollierung im Logbuch ein/aus Übernehmen mit enter	ON/ OFF
SIP Sterilisierungszyklen ein/aus	Mit Pfeiltasten ▲ ON oder OFF auswählen. Schaltet die Protokollierung im Logbuch ein/aus Übernehmen mit enter	ON/ OFF

Das Protokollieren von Reinigungs- und Sterilisierungszyklen bei eingebautem Sensor trägt zur Messung der Belastung des Sensors bei.

Praktikabel bei Bioanwendungen (Prozesstemperatur ca. 0 ... 50 °C,

CIP-Temperatur > 55 °C, SIP-Temperatur > 115 °C).

Hinweis:

Der Eintrag von CIP- bzw. SIP-Zyklen in das Logbuch erfolgt erst 2 Stunden nach dem Beginn, um zu gewährleisten, dass es sich um einen abgeschlossenen Zyklus handelt.

Cond

Temperaturkompensation (Cond)

enter

- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Temperaturkompensation

75 Cond

3		
Menüpunkt	Aktion	Auswahl
Temperaturkompensation	Mit Pfeiltasten A gewünsch- te Kompensation auswählen: OFF: Temperaturkompensation abgeschaltet	OFF LIN NLF nACL HCL nH3 nAOH
	LIN: Lineare Temperaturkompensation Mit Pfeiltasten ▲ ▼ gewünsch- ten Temperaturkoeffizienten und Referenztemperatur ein- geben	TC LIQUID 00.00 +19.99 %/K REF TEMP -20 200 °C (25.0 °C) 4 392 °F (077.0 °F)
COR: TC SELECT	NLF: Temperaturkompensation für natürliche Wässer nach EN 27888	
	nACI: Temperaturkompensation für Reinstwasser mit NaCI- Spuren	
	HCL: Temperaturkompensation für Reinstwasser mit HCI-Spuren	
	nH3: Temperaturkompensation für Reinstwasser mit NH ₃ -Spuren Übernehmen mit enter	
	nAOH (ohne Abbildung)	

Übersicht Konfigurierung Condl

Condl

Konfi	Konfigurierung Condl Auswahl DEFAULT		DEFAULT-Werte fett		
BUS:	ADDRESS		0000 0126		
SNS:			SE 655 SE 656 SE	E 660 SE 670 SE 680	
			MEMOSENS OTHE	R	
	OTHER	RTD TYPE	100 PT		
			1000 PT 30 NTC		
	OTHER	CELLFACTOR	XX.XXx (01.980)		
	OTHER	TRANS RATIO	XXX.Xx (120.00)		
	MEAS MO	DE	Cond Conc % SA	L ‰ TDS	
	Cond	DISPLAY UNIT	0.000 mS/c *)	L	
			00.00 mS/c		
			0000 mS/c		
			0.000 S/m		
			00.00 S/m		
	Conc	SOLUTION	-01- (NaCl)		
			-02- (HCI)		
			-04- (H2SO4)		
			-05- (HNO3)		
			-06- (H2SO4)		
			-07- (HCI)		
			-08- (HINO3) -09- (H2SO4)		
			-10- (NaOH)		
			-U1-		
	TEMP UNI	Т	°C °F		
	TEMPERA	TURE	AUTO MAN BUS		
	MAN	TEMPERATURE	-50 250 °C (02	5.0 °C)	
			-50 482 °F (07	7.0 °C)	
	CIP COUNT		ON OFF		
	SIP COUNT		ON OFF		
COR:	R: TC SELECT		OFF LIN nLF nA	CL HCL nH3 nAOH	
	LIN	TC LIQUID	0 +19.99 %/K	(00.00 %/K)	
	LIN REF TEMP		-20 200 °C (25	.0 °C)	
			4 392 °F (077.	0 °F)	
	TDS FACTOR ¹⁾		0.01 99.99 (1.0)0)	
IN:	FLOW ADJUST 0 20 000 I/L (12 000 I/L)		2 000 l/L)		

Übersicht Konfigurierung Condl

Condl

Konfi	igurierung Condl	Auswahl DEFAULT-Werte fett
ALA:	ALARM DELAY	0 600 SEC (010 SEC)
	SENSOCHECK	ON OFF
	HOLD	OFF LAST
CLK:	CLK FORMAT	24h 12h
	CLKTIME	hh:mm hh.mm (A/M) (00.00)
	CLK DAY/MONTH	dd.mm (01.01.)
	CLK YEAR	уууу (2014)

*) Messbereich 0.000 mS/cm bei Sensor SE 660 gesperrt

¹⁾ wenn MEAS MODE = TDS

Kopiervorlage Konfigurierung Condl

Condl

Param	neter	Defaultwert	Eingestellter Wert
BUS:	Adresse	126	
	Sensortyp	SE 655	
	Temperaturfühlertyp	1000 PT	
	Zellfaktor	01.980 с	
	Übertragungsfaktor	120.00	
	Messmodus	Cond	
CNIC.	Messbereich Cond	000.0 mS/cm	
505:	Konzentrationsbestimmung	-01- (NaCL)	
	Temperatureinheit	°C	
	Temperatur	AUTO	
	Temperatur manuell	25.0 °C (77.0 °F)	
	CIP-Zähler	OFF	
	SIP-Zähler	OFF	
	Temperaturkompensation	OFF	
COD	Temperaturkompensation LINEAR	00.00%/K	
COR:	Referenztemperatur LINEAR	25.0 °C (77.0 °F)	
	TDS-Faktor ¹⁾	1.00	
IN:	Durchflussmesser (Impulse /Liter)	12 000 l/L	
	Durchflussmesser (Erfassungsintervall)	1 s	
	Verzögerungszeit	10 s	
ALA:	Sensocheck	OFF	
	HOLD-Zustand	LAST	
	Zeitformat	24h	
CI K.	Zeit hh/mm	00.00	
CLK:	Tag/Monat	01.01.	
	Jahr	2014	

¹⁾ wenn MEAS MODE = TDS

Kopiervorlage Konfigurierung Condl 79

Condl

Condl

80

Konfigurierung Condl

Gerätetyp Condl

Gesteckte Module werden automatisch erkannt. Der Gerätetyp kann im Menü SERVICE geändert werden, der Kalibriermodus muss anschließend im Menü CONF eingestellt werden.

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- **4** Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Condl

3		
Menüpunkt	Aktion	Auswahl
PROFIBUS-Adresse	Mit Pfeiltasten ▲ ✓ Wert verän- dern, mit Pfeiltasten ◀ ▶ andere Stelle auswählen. Übernehmen mit enter Hinweis: Bei aktiver Kommunikation kann die PROFIBUS-Adresse nicht verän- dert werden.	0000 0126
Sensortyp	Mit Pfeiltasten ▲ ▼ verwende- ten Sensortyp auswählen.	SE655 SE656, SE660, SE670, SE680, MEMOSENS, OTHER
5NS: 5E655	Übernehmen mit enter	
Temperaturfühler	nur bei OTHER Mit Pfeiltasten ▲ ✓ verwende- ten Temperaturfühlertyp aus- wählen. Übernehmen mit enter	1000 PT 100 PT 30 NTC
Zellfaktor	nur bei OTHER Mit Pfeiltasten ▲ ▼ ◀ ↓ Zellfaktor eingeben. Übernehmen mit enter	01.980 XX.XXx
Übertragungsfaktor	nur bei OTHER Mit Pfeiltasten ▲ ▼ () Übertragungsfaktor eingeben. Übernehmen mit enter	120.00 XXX.Xx
Messmodus	Mit Pfeiltasten ▲ ▼ gewünsch- ten Messmodus auswählen. Übernehmen mit enter	Cond Conc % Sal ‰ TDS
Messbereich	nur bei Cond-Messung Mit Pfeiltasten ▲ ▼ gewünsch- ten Messbereich auswählen. Übernehmen mit enter	x.xxx mS/cm, xx.xx mS/cm xxx.x mS/cm , xxxx mS/m, x.xxx S/m, xx.xx S/m

Condl

meas

4

Sensor, Konzentrationsbestimmung

Οŗ

Temperatureinheit

Temperaturerfassung

Reinigungszyklen CIP

Sterilisierungszyklen SIP

Temperaturkompensation

83

Menüpunkt	Aktion	Auswahl
onzentrationsbestimmung	Nur bei Conc-Messung	-01- (NaCl), -02- (HCl), -03- (NaOH), -04- (H_SO),
- [] - i SN5: SOLUTION	Mit Pfeiltasten ▲	-05- (HNO ₃), -06- (H ₂ SO ₄), -07- (HCl), -08- (HNO ₃), -09- (H ₂ SO ₄), -10- (NaOH), -U1-
	Ubernehmen mit enter	

Für eine kundenspezifische Lösung können 5 Konzentrationswerte in einer Matrix mit 5 vorzugebenden Temperaturwerten 1 ... 5 eingegeben werden. Dazu werden zuerst die 5 Temperaturwerte eingegeben, anschließend die zugehörigen Leitfähigkeitswerte für jede der Konzentrationen 1 ... 5. Diese Lösungen stehen dann zusätzlich zu den fest vorgegebenen Standard-Lösungen unter der Bezeichnung "U1" zur Verfügung.

Bestätigen mit enter	
Mit Pfeiltasten ▲ ▼ ◀ ▶ Temperaturwerte 1 5 einge- ben. Übernehmen mit enter	Eingabebereich: –50250 °C / –58482 °F
Mit Pfeiltasten ▲ ▼ () Konzentrationswert 1 eingeben. Übernehmen mit enter	
Für Konzentrationswert 1: Mit Pfeiltasten ▲ ▼ () Leitfähigkeitswerte für Temperaturen 1 5 eingeben. Übernehmen mit enter	

Condl

Condl

Sensor, Temperaturerfassung

enter

- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

	3
PROFIBUS-Adresse	
Sensortyp	
Temperaturfühler	
Zellfaktor	
Übertragungsfaktor	
Messmodus	
Messbereich	
Konzentrationsbestimmung	
Temperatureinheit	
Temperaturerfassung	
Reinigungszyklen CIP	
Sterilisierungszyklen SIP	
Temperaturkompensation	

Condl

3		
Menüpunkt	Aktion	Auswahl
Temperatureinheit	Mit Pfeiltasten ▲ ▼ °C oder °F wählen.	°C / °F
DF SNS: TEMP UNIT	Übernehmen mit enter	
Temperaturerfassung	Mit Pfeiltasten ▲ Modus auswählen: AUTO: Erfassung über Sensor MAN: direkte Eingabe der Temp., keine Erfassung (s. nächster Schritt) BUS: Wert aus AO Block	AUTO MAN BUS
(Manuell Temperatur)	Ubernehmen mit enter Mit Pfeiltasten ▲	–50250 °C (25.0 °C) (−58482 °F) (77.0 °F)

Condl

Sensor, Reinigungszyklen, Sterilisierungszyklen

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Condl

3		
Menüpunkt	Aktion	Auswahl
CIP Reinigungszyklen ein/aus	Mit Pfeiltasten ▲ ON oder OFF auswählen. Schaltet die Protokollierung im Logbuch ein/aus Übernehmen mit enter	ON/ OFF
SIP Sterilisierungszyklen ein/aus	Mit Pfeiltasten ▲ ➤ ON oder OFF auswählen. Schaltet die Protokollierung im Logbuch ein/aus Übernehmen mit enter	ON/ OFF

Das Protokollieren von Reinigungs- und Sterilisierungszyklen bei eingebautem Sensor trägt zur Messung der Belastung des Sensors bei.

Praktikabel bei Bioanwendungen (Prozesstemperatur ca. 0 ... 50 °C,

CIP-Temperatur > 55 °C, SIP-Temperatur > 115 °C).

Hinweis:

Der Eintrag von CIP- bzw. SIP-Zyklen in das Logbuch erfolgt erst 2 Stunden nach dem Beginn, um zu gewährleisten, dass es sich um einen abgeschlossenen Zyklus handelt.

Condl

Temperaturkompensation (Condl)

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

	3
PROFIBUS-Adresse	
Sensortyp	
Temperaturfühler	
Zellfaktor	
Übertragungsfaktor	
Messmodus	
Messbereich	
Konzentrationsbestimmung	
Temperatureinheit	
Temperaturerfassung	
Reinigungszyklen CIP	
Sterilisierungszyklen SIP	
Temperaturkompensation	

Condl

3		
Menüpunkt	Aktion	Auswahl
Temperaturkompensation	Mit Pfeiltasten A	OFF LIN NLF nACL HCL nH3 nAOH
	LIN: Lineare Temperaturkompensation Mit Pfeiltasten ▲ ▼ gewünsch- ten Temperaturkoeffizienten und Referenztemperatur ein- geben.	TC LIQUID 00.00 +19.99 %/K REF TEMP -20 200 °C (25.0 °C) 4 392 °F (077.0 °F)
COR: TC SELECT	NLF: Temperaturkompensation für natürliche Wässer nach EN 27888	
	nACI: Temperaturkompensation für Reinstwasser mit NaCI- Spuren	
	HCL: Temperaturkompensation für Reinstwasser mit HCI-Spuren	
	nH3: Temperaturkompensation für Reinstwasser mit NH ₃ -Spuren Übernehmen mit enter	
	nAOH (ohne Abbildung)	

Konfigurierung Oxy-Sensor

Оху

Konfi	figurierung Oxy Auswahl DEFAULT-		Auswahl DEFAULT-Werte fett		
BUS:	ADDRE	SS		0000 0126	
SNS:				STANDARD TRACES SUBTRACES	
				MEMOSENS ISM LDO SE 740 ^{*)}	
	MEAS N	NODE		dO % dO mg/l dO ppm GAS %	
	U-POL	MEAS ¹⁾		00001000 mV (-675 mV)	
	U-POL			00001000 mV (-675 mV)	
	MEMB	R.COMP	1) 3)	00.50 03.00 (01.00)	
	RTD TY	PE ¹⁾³⁾		22 NTC 30 NTC	
	TEMP L	JNIT		°C °F	
	CALMO	DE ²⁾		CAL AIR CAL WTR	
	CALTIN	MER ³⁾		ON OFF	
	ON	CAL CY	CLE	0 9999 h (0168 h)	
	ACT ⁴⁾			OFF AUTO MAN	
	MAN	ACT CY	CLE ⁴⁾	0 9999 DAY (0030 DAY)	
	TTM ⁴⁾ MAN TTM CYCLE ⁴⁾ CIP COUNT ON CIP CYCLES ⁵⁾ SIP COUNT			OFF AUTO MAN)	
			'CLE ⁴⁾	0 2000 DAY (0365 DAY)	
				ON OFF	
			CLES ⁵⁾	0 9999 CYC (0000 CYC)	
				ON OFF	
	ON	SIP CYC	CLES ⁵⁾	0 9999 CYC (0000 CYC)	
	AUTOC	LAVE ⁵⁾		ON OFF	
	ON		AC CYCLES 5)	0 9999 CYC (0000 CYC)	
COR:	SALINI	ТҮ		00.00 45.00 ppt (00.00 ppt)	
	PRESSU	JRE UNI	Г	BAR KPA PSI	
	PRESSU	JRE	1	MAN BUS	
	MAN	BAR	PRESSURE	0.000 9.999 BAR (1.013 BAR)	
	MAN	KPA	PRESSURE	000.0 999.9 KPA (100 KPA)	
	MAN	MAN PSI PRESSURE		000.0 145.0 PSI (14.5 PSI)	
IN:	FLOW ADJUST			0 20 000 l/L (12 000 l/L)	
ALA:	ALARM	DELAY		0 600 SEC (010 SEC)	
	SENSO	CHECK		ON OFF	
	HOLD			OFF LAST	

Konfigurierung Oxy-Sensor

Konf	igurierung Oxy	Auswahl	DEFAULT-Werte fett	
CLK:	CLK FORMAT	24h 12h	24h 12h	
	CLK TIME	hh:mm hh.mm	n (A/M) (00.00)	
	CLK DAY/MONTH	dd.mm (01.01	l.)	
	CLK YEAR	уууу (2014)		

- *) nur Stratos Pro A451N
- ¹⁾ entfällt bei Memosens und LDO SE 740
- ²⁾ entfällt bei MEAS MODE = GAS %
- ³⁾ entfällt bei ISM
- ⁴⁾ nur ISM
- ⁵⁾ nur ISM und LDO SE 740

Kopiervorlage Konfigurierung Oxy

Оху

Parameter		Defaultwert	Eingestellter Wert
BUS:	Adresse	126	
	Sensortyp	STANDARD	
	Messmodus	dO %	
	Polarisationsspannung Messung ¹⁾	-675 mV	
	Polarisationsspannung Kalibrierung ¹⁾	-675 mV	
	Membrankompensation ^{1) 3)}	01.00	
	Temperaturfühlertyp ^{1) 3)}	22 NTC	
	Temperatureinheit	°C	
	Kalibriermodus ²⁾	CAL AIR	
	Kalibriertimer ³⁾	OFF	
CNIC.	Kalibrierzyklus	7 DAY	
2112.	Adaptiver Kalibriertimer (ACT) 4)	OFF	
	Kalibrierzyklus (ACT) ⁴⁾	30 DAY	
	Adaptiver Wartungstimer (TTM) ⁴⁾	OFF	
	Wartungszyklus (TTM) ⁴⁾	365 DAY	
	CIP-Zähler	OFF	
	CIP-Zyklen ⁵⁾	0000 CYC	
	SIP-Zähler	OFF	
	SIP-Zyklen ⁵⁾	0000 CYC	
	Autoklavierzähler 5)	OFF	
	Autoklavierzyklen 5)	0000 CYC	
	Salinität	00.00 ppt	
	Druckeinheit	BAR	
COD	Druckmessung	MAN	
COK:	Druck manuell BAR	1.013 bar	
	Druck manuell KPA	100 KPA	
	Druck manuell PSI	14.5 PSI	

Kopiervorlage Konfigurierung Oxy

93 Oxy

Param	neter	Defaultwert	Eingestellter Wert
IN:	Durchflussmesser (Impulse /Liter)	12 000 I/L	
	Durchflussmesser (Erfassungsintervall)	1 s	
	Verzögerungszeit	10 s	
ALA:	Sensocheck	OFF	
	HOLD-Zustand	LAST	
	Zeitformat	24h	
CLK:	Zeit hh/mm	00.00	
	Tag/Monat	01.01.	
	Jahr	2014	

- ¹⁾ entfällt bei Memosens und LDO SE 740
- ²⁾ entfällt bei MEAS MODE = GAS %
- ³⁾ entfällt bei ISM
- ⁴⁾ nur ISM
- ⁵⁾ nur ISM und LDO SE 740

Оху

enter

Konfigurierung Oxy

Gerätetyp Oxy

Gesteckte Module werden automatisch erkannt. Der Gerätetyp kann im Menü SERVICE geändert werden, der Kalibriermodus muss anschließend im Menü CONF eingestellt werden.

- 1 Taste menu drücken.
- 2 Mit Pfeiltasten ↓ ► CONF wählen, enter drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- **4** Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

2

95 Oxy

3		
Menüpunkt	Aktion	Auswahl
PROFIBUS-Adresse	Mit Pfeiltasten ▲ ✓ Wert verän- dern, mit Pfeiltasten ◀ ▶ andere Stelle auswählen. Übernehmen mit enter Hinweis: Bei aktiver Kommunikation (Symbol) kann die PROFIBUS-Adresse nicht ver- ändert werden.	0000 0126
Sensortyp	Mit Pfeiltasten ▲ ▼ verwende- ten Sensortyp auswählen. Übernehmen mit enter	STANDARD TRACES SUBTRACES MEMOSENS ISM LDO SE 740 (nur A451N)
Messmodus	Mit Pfeiltasten A verwende- ten Messmodus auswählen. dO: Messung in Flüssigkeiten GAS: Messung in Gasen Übernehmen mit enter	dO %, dO mg/l dO ppm GAS %
Polarisationsspannung - 5 7 5 ml/ SNS: U-POL - FOL 	Getrennt einzugeben für Messung und Kalibrierung. Bei Messung im Spurenbereich U-POL MEAS = -500 mV Mit Pfeiltasten U _{pol} eingeben. Übernehmen mit enter	-675 mV 00001000 mV nicht bei Memosens, ISM und LDO SE 740
Membrankompensation	Mit Pfeiltasten ▲ ▼ ↓ Membrankompensation ein- geben. Übernehmen mit enter	01.00 00.50 03.00 nicht bei Memosens, ISM und LDO SE 740
Temperaturfühlertyp	Mit Pfeiltasten ▲ ▼ verwen- deten Temperaturfühlertyp auswählen. Übernehmen mit enter	22 NTC 30 NTC <i>nicht bei Memosens, ISM</i> <i>und LDO SE 740</i>

Оху

96

Sensor, Temperatureinheit, Medium Wasser/Luft, Kalibriertimer

- 1 Taste menu drücken.
- 2 Mit Pfeiltasten ► CONF wählen, enter drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Оху

- 3		
Menüpunkt	Aktion	Auswahl
Temperatureinheit	Mit Pfeiltasten ▲ ▼ Temperatureinheit wählen. Übernehmen mit enter	°C °F
Kalibriermodus Luft/Wasser	Mit Pfeiltasten A - Kalibriermedium wählen. AIR: Kalibriermedium Luft WTR: Kalibriermedium sauer- stoffgesättigtes Wasser Übernehmen mit enter	CAL_AIR CAL_WTR
Kalibriertimer	Mit Pfeiltasten 🔺 👻 Kalibriertimer ein-/ausschalten Übernehmen mit enter	ON OFF
(ON: Kalibrier-Zyklus)	Mit Pfeiltasten A V () Kalibrier-Zyklus in Stunden eingeben Übernehmen mit enter	0 9999 h 0168 h

Hinweise zum Kalibriertimer:

Wenn Sensocheck aktiviert ist, dann wird der Ablauf des Kalibrierintervalls durch Sensoface im Display angezeigt (Messbecher-Symbol und Smiley). Die verbleibende Zeit bis zur nächsten Kalibrierung kann in der Diagnose abgefragt werden (siehe Abschnitt Diagnose, ab Seite 156).

Оху

ISM-Sensor, Adaptiver Kalibriertimer (ACT)

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ > PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Adaptiver Kalibriertimer (ACT)

Der adaptive Kalibriertimer erinnert über eine Sensoface-Meldung an die erforderliche Kalibrierung des Sensors. Sobald das Intervall abgelaufen ist, wird Sensoface "traurig".

Der mit der **info**-Taste abrufbare Text "OUT OF CAL TIME CALIBRATE SENSOR" verweist auf die Ursache für die Sensoface-Meldung und erinnert so an die erforderliche Kalibrierung. Das ACT-Intervall kann entweder automatisch aus den Werkseinstellungen des Sensors ausgelesen werden oder wird manuell vorgegeben (max. 2000 Tage). Stressende Einflüsse (Temperatur, Messung in Extrembereichen) verkürzen das Timerintervall.

Mit einer Kalibrierung wird der adaptive Kalibriertimer wieder auf den Anfangswert gesetzt.

3		
Menüpunkt	Aktion	Auswahl
Adaptiver Kalibriertimer (ACT)	Mit Pfeiltasten ▲ wählen: OFF: kein Timer AUTO: Übernahme des im ISM- Sensor abgelegten Intervalls MAN: Manuelle Vorgabe des Intervalls (0 2000 Tage) Default ACT CYCLE: 30 Tage Übernehmen mit enter	OFF AUTO MAN

Оху

ISM-Sensor, Adaptiver Wartungstimer (TTM)

1

Taste **menu** drücken.

- Mit Pfeiltasten () CONF wählen, enter drücken.
 Mit Pfeiltasten → ✓ () PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken. Es folgt der nächste Menüpunkt. Auswahl jeweils mit Pfeiltasten → ✓ (siehe rechte Seite). Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Оху

Adaptiver Wartungstimer (TTM, Time to Maintenance)

Der adaptive Wartungstimer erinnert über eine Sensoface-Meldung an die erforderliche Wartung des Sensors. Sobald das Intervall abgelaufen ist, wird Sensoface "traurig". Der mit der **info**-Taste abrufbare Text "OUT OF MAINTENANCE CHECK ELECTROLYTE AND MEMBRANE" verweist auf die Ursache für die Sensoface-Meldung und erinnert so an die erforderliche Sensorwartung. Das TTM-Intervall kann entweder automatisch aus den Werkseinstellungen des Sensors ausgelesen werden oder wird manuell vorgegeben (max. 2000 Tage). Stressende Einflüsse (Temperatur, Messung in Extrembereichen) verkürzen das Timerintervall.

3			
Menüpunkt	Aktion	Auswahl	
Adaptiver Wartungstimer (TTM)	Wahl mit Pfeiltasten: AUTO: Übernahme des im ISM- Sensor abgelegten Intervalls MAN: Manuelle Vorgabe des Intervalls (0 2000 Tage) Default TTM CYCLE: 365 Tage Übernehmen mit enter	OFF AUTO MAN	
Zurückgesetzt werden kann der adaptive Wartungstimer im Menü SERVICE / SENSOR / TTM. Das Intervall wird hierbei auf den Anfangswert zurückgesetzt.			
¥ES TIM RESET ₽	Erforderlich ist dazu die Auswahl von "TTM RESET = YES" mit abschließender Bestätigung durch enter .	NO / YES	

Оху

102

Sensor, CIP-Reinigungszyklen, SIP-Sterilisierungszyklen

- 1 Taste menu drücken.
- 2 Mit Pfeiltasten ► CONF wählen, enter drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ > PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Оху

3		
Menüpunkt	Aktion	Auswahl
CIP-Zähler	Mit Pfeiltasten ▲ ▼ CIP-Zähler einstellen: OFF: kein Zähler ON: fester Reinigungszyklus (einstellen im nächsten Schritt) Übernehmen mit enter	ON OFF
CIP-Zyklen	Nur bei CIP COUNT ON: Mit Pfeiltasten ▲ ✔ ◀ ↓ maximale Reinigungszyklen eingeben Übernehmen mit enter	0000 9999 CYC
SIP-Zähler	Mit Pfeiltasten A SIP-Zähler einstellen: OFF: kein Zähler ON: max. Sterilisierzyklen (einstellen wie CIP-Zyklen) Übernehmen mit enter	ON OFF

Das Zählen von Reinigungs- und Sterilisierungszyklen bei eingebautem Sensor trägt zur Messung der Belastung des Sensors bei. Praktikabel bei Bioanwendungen (Prozesstemperatur ca. 0 ... 50 °C, CIP-Temperatur > 55 °C, SIP-Temperatur > 115 °C).

Оху

104

ISM-Sensor, Autoklavierzähler

- 1 Taste **menu** drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ > PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

Autoklavierzähler

Der Autoklavierzähler generiert bei Ablauf des vorgegebenen Grenzwerts eine Sensoface-Meldung. Sobald der vorgegebene Zählerstand für den Autoklavierzähler erreicht ist, wird Sensoface "traurig". Der mit der **info**-Taste abrufbare Text "AUTOCLAVE CYCLES OVERRUN" verweist auf die Ursache für die Sensoface-Meldung und erinnert so an das Erreichen der für den Sensor maximal erlaubten Autoklavierzyklen. Dazu muss der Autoklavierzähler manuell am Gerät nach jeder Autoklavierung im Servicemenü SENSOR inkrementiert werden. Das Gerät liefert die Rückmeldung "INCREMENT AUTOCLAVE CYCLE".

3				
Menüpunkt	Aktion	Auswahl		
Autoklavierzähler	Wahl mit Pfeiltasten: OFF: kein Zähler ON: Manuelle Vorgabe der Zyklen (0000 9999). Übernehmen mit enter	ON OFF nur ISM		
Ist der Autoklavierzähler ein vierung inkrementiert werd	Ist der Autoklavierzähler eingeschaltet, muss der Zählerstand nach jeder Autokla- vierung inkrementiert werden:			
Autoklavierzähler inkrementieren (Menü SERVICE)	Nach der Autoklavierung muss der Zählerstand des Autoklavierzählers im Menü SERVICE / SENSOR/ AUTOCLAVE inkrementiert werden. Erforderlich ist dazu die Auswahl von " YES " mit Bestätigung durch enter .	NO YES		

105

Оху

Konfigurierung Oxy

Оху

Korrektur (Oxy), Salzkorrektur, Druckkorrektur

1

4

Taste **menu** drücken.

enter drücken.

2 Mit Pfeiltasten ► CONF wählen,

(0000 ... 0126), **enter** drücken. Es folgt der nächste Menüpunkt.

Bestätigen (und weiter) mit enter.

[meas] im Display erscheint.

3 Mit Pfeiltasten ▲ ▼ ◀ ▶ PROFIBUS-Adresse eingeben

Beenden: Taste meas drücken, bis der Statusbalken

Auswahl jeweils mit Pfeiltasten ▲ (siehe rechte Seite).

3 PROFIBUS-Adresse Sensortyp Messmodus Polarisationsspannung Messen/Kalibrieren Membrankompensation Temperaturfühlertyp Temperatureinheit Kalibriermodus Luft/Wasser Kalibriertimer Adaptiver Kalibriertimer Adaptiver Wartungstimer Reinigungszyklen CIP Sterilisierungszyklen SIP Autoklavierzähler Salinität Druckeinheit Druckkorrektur

5

Оху

5		
Menüpunkt	Aktion	Auswahl
	Mit Pfeiltasten ▲ ▾ Salzkorrektur einstellen.	00.00 ppt xx.xx ppt
	Übernehmen mit enter	
Druckeinheit	Mit Pfeiltasten ▲ ▾ Einheit für den Druck wählen.	BAR KPA PSI
COR: PRESSURE	Übernehmen mit enter	
Druckkorrektur MAN	Wahl mit Pfeiltasten A - MAN: Manuelle Eingabe BUS: Wert aus AO-Block	MAN BUS
	Übernehmen mit enter	
Manuelle Druckvorgabe	Mit Pfeiltasten ▲ ✔ ◀ ▶ Wert eingeben.	Eingabebereich: 0.000 9.999 BAR 000.0 999.9 KPA 000.0 145.0 PSI
	Übernehmen mit enter	1.013 BAR 100 KPA 14.5 PSI

CC

Die Sensoren A und B – Anordnung der Messstelle

Kanalauswahl und Displayzuordnung

Gerätetyp: Cond-Cond

Berechnungen (CALC)

CONF	Berechnung	Gleichung/Beschreibung
-C1-	Differenz	COND A – COND B
-C2-	Ratio	COND A / COND B
-C3-	Passage	COND B / COND A * 100
-C4-	Rejection	(COND A – COND B) / COND A * 100
-C5-	Deviation	(COND B – COND A) / COND A * 100
-C6- ** ⁾	pH-Wert nach VBG S-006	Zusätzliche Vorgaben möglich zur Verbrauchsberechnung des Ionentauschers (Größe, Kapazität, Effizienz)
	Alkalisierungsmittel NaOH	11+log((COND A – COND B /3)/243)
	Alkalisierungsmittel LiOH	11+log((COND A – COND B /3)/228)
	Alkalisierungsmittel NH3	11+log((COND A – COND B /3)/273)
	EXCHER CAP	ON / OFF
		Anzeige der Restkapazität:
		Menü Diagnose, Monitor
		Bei Wechsel des Ionentauschers Eintrag im
		Menu SERVICE erforderlich, siene Seite 163.
	EXCHER SIZE	Eingabe der lonentauscher-Größe
	EXCHER SIZE CAPACITY	Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität
	EXCHER SIZE CAPACITY EFFICIENCY	Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität Eingabe der Ionentauscher-Effizienz
-C7-	EXCHER SIZE CAPACITY EFFICIENCY pH-Wert variabel, Faktoren eingebbar	Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität Eingabe der Ionentauscher-Effizienz C+log((Cond A -Cond B / F1) / F2) / F3
-C7-	EXCHER SIZE CAPACITY EFFICIENCY pH-Wert variabel, Faktoren eingebbar COEFFICIENT	Menu SERVICE erforderlich, siene Seite 163. Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität Eingabe der Ionentauscher-Effizienz C+log((Cond A -Cond B / F1) / F2) / F3 Koeffizient C
-C7-	EXCHER SIZE CAPACITY EFFICIENCY pH-Wert variabel, Faktoren eingebbar COEFFICIENT FACTOR 1	Menu SERVICE erforderlich, siene Seite 163. Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität Eingabe der Ionentauscher-Effizienz C+log((Cond A -Cond B / F1) / F2) / F3 Koeffizient C Faktor F1
-C7-	EXCHER SIZE CAPACITY EFFICIENCY pH-Wert variabel, Faktoren eingebbar COEFFICIENT FACTOR 1 FACTOR 2	Menu SERVICE erforderlich, siene Seite 163. Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität Eingabe der Ionentauscher-Effizienz C+log((Cond A -Cond B / F1) / F2) / F3 Koeffizient C Faktor F1 Faktor F2
-C7-	EXCHER SIZE CAPACITY EFFICIENCY pH-Wert variabel, Faktoren eingebbar COEFFICIENT FACTOR 1 FACTOR 2 FACTOR 3	Menu SERVICE errorderlich, siene Seite 163. Eingabe der Ionentauscher-Größe Eingabe der Ionentauscher-Kapazität Eingabe der Ionentauscher-Effizienz C+log((Cond A -Cond B / F1) / F2) / F3 Koeffizient C Faktor F1 Faktor F2 Faktor F3

110		Gerätetyp: Cond-Cond
сс]	
-C8-	USER SPEC ^{*)} (DAC) PARAMETER W, A, B eingebbar	
-C9-** ⁾	ALKALISING	Konzentration des Alkalisierungsmittels Auswahl NaOH, NH3, LiOH
	nAOH	Konzentrationsberechnung
	nH3	Konzentrationsberechnung
	LiOH	Konzentrationsberechnung

*) Kundenspezifische Parametereingabe möglich.

**) Die Konzentration des Alkalisierungsmittels kann bei C6 und C9 im Display und im Monitor angezeigt und auf die Stromausgänge geschaltet werden.

pH-Wert-Berechnung aus Dual-Leitfähigkeitsmessung

Bei der Überwachung von Kesselspeisewasser in Kraftwerken lässt sich aus einer Dual-Leitfähigkeitsmessung unter bestimmten Voraussetzungen der pH-Wert errechnen. Hierzu wird der Leitwert des Kesselspeisewassers vor und nach dem Ionenaustauscher gemessen. Diese häufig angewandte Methode der indirekten pH-Wert-Messung ist relativ wartungsarm und hat folgenden Vorteil: Eine reine pH-Wert-Messung in Reinstwasser ist sehr kritisch. Kesselspeisewasser ist ein ionenarmes Medium. Das erfordert den Einsatz einer Spezialelektrode, die Iaufend kalibriert werden muss und in der Regel keine hohe Standzeit besitzt.

Funktion

Zur Leitfähigkeitsmessung vor und nach dem Ionenaustauscher werden zwei Sensoren eingesetzt. Aus den beiden berechneten Leitfähigkeitsmesswerten wird der pH-Wert ermittelt.

CC

Auszug aus VGB-S-006-00-2012-09-DE:

"Berechneter pH-Wert

Aufgrund der Vielzahl der für eine korrekt arbeitende pH-Messung einzuhaltenden Randbedingungen wird in der Praxis vorwiegend der pH-Wert des Kraftwerkspeisewassers über die nachfolgend beschriebene Berechnungsmethode aus der spezifischen Leitfähigkeit und der Säureleitfähigkeit ermittelt.

Bei alleiniger Anwendung eines einzelnen Alkalisierungsmittels wie Ammoniak, Natronlauge oder Lithiumhydroxid wird der pH-Wert im Bereich 7,5 bis 10,5 wie folgt berechnet:

$$pH_{NH_3} = log\left(\frac{x_{v} - 1/3 x_h}{273}\right) + 11$$

$$pH_{NaOH} = \log\left(\frac{x_{v} - \frac{1}{3}x_{h}}{243}\right) + 11$$

$(X_{\mu} - \frac{1}{2}X_{h})$	$\mathrm{X}_{\mathcal{V}}$ = Leitfähigkeit
$pH_{\text{LIOH}} = \log\left(\frac{-\frac{1}{228}n}{228}\right) + 11$	\mathbf{X}_{h} = Säureleitfähigkeit

Grundsätzlich müssen die zur pH-Berechnung herangezogenen Leitfähigkeitsdaten temperaturkompensiert sein.

Die Anwendbarkeit der Berechnungsmethode ist grundsätzlich gegeben, jedoch ist mit steigender Säureleitfähigkeit auch zunehmende Ungenauigkeit hinzunehmen."

(Auszug aus VGB-S-006-00-2012-09-DE, Seiten 62, 63)

112

Konfigurierung Cond-Cond

Konfi	Configurierung Auswahl DEFAULT-Werte fett			DEFAULT-Werte fett	
BUS:	ADDRESS 0000 0126			5	
SENSO	NSOR A				
S_A:	CELLF/	ACTOR (A) ¹⁾	0.0050 1.9999 (0.0290)		
	TC SEL	ECT (A)	OFF LIN nL	F nACL HCL nH3 nAOH	
	LIN	TC LIQUID (A)	00.00 +19	.99 %/K (00,00 %/K)	
	LIN	REF TEMP (A)	-20 200 °C	(25.0 °C)	
			4 392 °F	(077.0 °F)	
SENSO	RB				
S_B:	CELLF/	ACTOR (B) ¹⁾	0.0050 1.9	999 (0.0290)	
	TC SEL	ECT (B)	OFF LIN nL	.F nACL HCL nH3 nAOH	
	LIN	TC LIQUID (B)	00.00 +19	.99 %/K (00,00 %/K)	
	LIN	REF TEMP (B)	-20 200 °C	(25.0 °C)	
			4 392 °F	(077.0 °F)	
MEAS	MODE				
MES:	MEAS RANGE ²⁾		$0.000 \mu\text{S/cm}$		
	(gilt für Kanâle A und B)		000.0 uS/cm		
			0000 µS/cm		
			00.00 MΩ		
	TEMP	UNIT	°C °F		
	CALCU	LATION	ON OFF		
	ON		-C1-DIFFER	ENCE	
			-C2- RATIO	E	
			-C4- REJECTI	ŌN	
			-C5- DEVIATIO	ON	
			-CO-PH VGB	ABI F	
			-C8- USER SP	EC	
			-C9- ALKALIS	ING	
	-C6-	PHVGB	nAOH LiOH nH3		
		Eingaben zur Verbrau	erbrauchsberechnung des Ionentauschers		
		EXCHER CAP 3)	ON OFF		
		EXCHER SIZE 3)	00.50 5.0	0 LTR	
		CAPACITY ³⁾	1.000 5.0	00 VAL	
EFFICIENCY ³⁾ 50.00 100.0 %		0.0 %			

CC

Konfi	igurie	rung	Auswahl DEFAULT-Werte fett
MES:	-C7-	COEFFICIENT	00.00 99.99 (11.00)
		FACTOR 1	0.0001 9.9999 (3.0000)
		FACTOR 2	0001 9999 (0243)
		FACTOR 3	0.0001 9.9999 (1.0000)
-C8- PARAMET		PARAMETER W	xxxx E-3 (1000 E-3)
		PARAMETER A	xxx.x E-3 (000.0 E-3)
		PARAMETER B	xxx.x E-3 (000.0 E-3)
-C9- ALKALISING NaOH, NH3, LiOH			NaOH, NH3, LiOH

- 1) Sowohl über die Eingabe in der Konfigurierung als auch über eine Kalibrierung kann die Zellkonstante verändert werden (eine Speicherstelle). Damit wird eine durch die Kalibrierung ermittelte Zellkonstante in der Konfigurierung mit **enter** übernommen und bleibt unverändert. Die Zellkonstante wird erst verändert, wenn bewusst ein neuer Wert eingegeben wird.
- Bei der Leitfähigkeit (μS/cm) wird mit der Bereichswahl die max. Auflösung gewählt. Wird dieser Bereich nach "oben" überschritten, wird automatisch in den nächsthöheren Bereich geschaltet bis zur max. Messgrenze (9999 μS/cm). Dieses Verfahren gilt für Display und Stromausgänge. Zur Einstellung der Stromausgänge wird ein Gleitkommaeditor verwendet, der eine Einstellung über mehrere Dekaden erlaubt. Der Anfangsbereich des Editors entspricht dem gewählten Bereich:

Gewählte Auflösung	Dargestellter Messbereich (bzw. Gleitkomma-Editor)				
	x.xxx μS/cm	xx.xx μS/cm	xxx.x μS/cm	xxxx μS/cm	
x.xxx μS/cm					
xx.xx μS/cm					
xxx.x μS/cm					
xxxx μS/cm					

3) Eingaben zur Verbrauchsberechnung des Ionentauschers:

Aktivieren mit EXCHER CAP = ON. Meldungen im Menü Diagnose / Monitor Zur Verbrauchsberechnung des Ionentauschers sind zusätzliche Vorgaben möglich (Größe, Kapazität, Effizienz). Die Restkapazität wird im Menü DIAGNOSE / MONITOR angezeigt bzw. direkt aus dem Messmodus heraus durch wiederholtes Drücken der Tase **meas**, s. S. 155.

Bei Wechsel des Ionentauschers ist ein Eintrag im Menü SERVICE erforderlich.

Konfigurierung Cond-Cond

Konf	igurierung	Auswahl DEFAULT-Werte fett
IN:	ADJUST FLOW	0 20 000 l/L (12 000 l/L)
ALA:	ALARM DELAY	0 600 SEC (010 SEC)
	SENSOCHECK	ON OFF
	HOLD	OFF LAST
CLK:	CLK FORMAT	24h 12h
	CLK TIME	hh:mm hh.mm (A/M) (00.00)
	CLK DAY/MONTH	dd.mm (01.01.)
	CLK YEAR	уууу (2014)

116

Kopiervorlage Konfigurierung CC

Param	ieter	Defaultwert	Eingestellter Wert
BUS:	Adresse	126	
S_A:	Zellfaktor A	0.0290	
	Temperaturkompensation A	OFF	
	Temperaturkompensation LINEAR	00.00%/K	
	Referenztemperatur LINEAR	25.0 °C (77.0 °F)	
S_B:	Zellfaktor B	0.0290	
	Temperaturkompensation B	OFF	
	Temperaturkompensation LINEAR	00.00%/K	
	Referenztemperatur LINEAR	25.0 °C (77.0 °F)	
MES:	Messbereich	00.00 μS/cm	
	Temperatureinheit	°C	
	Kalkulation	OFF	
	CALCULATION ON	-C1- DIFFERENCE	
	-C6- PH VGB	nAOH	
	-C6- EXCHER CAP	OFF	
	-C6- EXCHER SIZE	00.50 LTR	
	-C6- CAPACITY	1.000 VAL	
	-C6- EFFICIENCY	100.0 %	
	-C7- COEFFICIENT	11.00	
	-C7- FACTOR 1	3.0000	
	-C7- FACTOR 2	0243	
	-C7- FACTOR 3	1.0000	
	-C8- PARAMETER W	1000 E-3	
	-C8- PARAMETER A	000.0 E-3	
	-C8- PARAMETER B	000.0 E-3	
	-C9- ALKALISING	NaOH	
IN:	Durchflussmesser (Impulse /Liter)	12 000 l/L	
	Durchflussmesser (Erfassungsintervall)	1 s	

Kopiervorlage Konfigurierung CC

117

Parameter		Defaultwert	Eingestellter Wert
ALA:	Verzögerungszeit	10 s	
	Sensocheck	OFF	
	HOLD-Zustand	LAST	
CLK:	Zeitformat	24h	
	Zeit hh/mm	00.00	
	Tag/Monat	01.01.	
	Jahr	2014	

118 Konfigurierung Eingang CONTROL

Durchflussmessung

enter

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

3
PROFIBUS-Adresse
Durchflussmessung
Alarmverzögerung
Sensocheck
HOLD
Uhrzeit und Datum

Konfigurierung Eingang CONTROL 119

Menüpunkt	Aktion	Auswahl
PROFIBUS-Adresse	Mit Pfeiltasten ▲	0000 0126
Anpassung an Durchflussmesser:	Zur Anpassung unterschiedli- cher Durchflussmesser muss eine Justierung vorgenommen werden. Mit Pfeiltasten ▲ Wert vor- geben, übernehmen mit enter	0 20 000 Impulse/Liter 12 000 Impulse/Liter
Erfassungsintervall der Impulse einstellen:	Mit Pfeiltasten ▲	1 20 SEC 0001 SEC
	Übernehmen mit enter	

Displaydarstellung

5

Durchflussmessung im Messmodus

Displaydarstellung

Durchflussmessung (Sensormonitor)

Hinweis: Die Ansprechgeschwindigkeit kann wegen Wertemittelung erniedrigt sein.

120

Alarm, Alarmverzögerungszeit, Sensocheck

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

		3
PROFIBUS-Adresse		
Durchflussmessung		
Alarmverzögerung		
Sensocheck		
HOLD		
Uhrzeit und Datum		

Konfigurierung Alarm

3		
Menüpunkt	Aktion	Auswahl
Alarmverzögerungszeit	Mit Pfeiltasten A Alarmverzögerungszeit eingeben. Übernehmen mit enter Die Alarmverzögerungszeit verzögert das Umschalten der Displayhinterleuchtung auf rot.	0 600 SEC (010 SEC)
Sensocheck	Auswahl Sensocheck (kon- tinuierliche Überwachung der Sensormembran und der Zuleitungen). Mit Pfeiltasten ▲ ▼ ON oder OFF auswählen. Übernehmen mit enter . (Gleichzeitig wird Sensoface aktiviert. Bei OFF ist auch Sensoface ausgeschaltet.)	ON OFF
HOLD	Messwertstatus während der Kalibrierung OFF: Messwert und Status wer- den normal aktualisiert LAST: Messwert und Status blei- ben auf letztem Wert (Last Usable Value)	OFF LAST

Uhrzeit und Datum einstellen

- 1 Taste menu drücken.
- 3 Mit Pfeiltasten ▲ ▼ ▲ ▶ PROFIBUS-Adresse eingeben (0000 ... 0126), enter drücken.
 Es folgt der nächste Menüpunkt.
 Auswahl jeweils mit Pfeiltasten ▲ ▼ (siehe rechte Seite).
 Bestätigen (und weiter) mit enter.
- 4 Beenden: Taste **meas** drücken, bis der Statusbalken [meas] im Display erscheint.

		3
PROFIBUS-Adresse		
Durchflussmessung		
Alarmverzögerung		
Sensocheck		
HOLD		
Uhrzeit und Datum		

3		
Menüpunkt	Aktion	Auswahl
Zeitformat	Mit Pfeiltasten ▲ ▼ Zeitformat auswählen eingeben.	24h 12h
	Übernehmen mit enter	
Uhrzeit	Mit Pfeiltasten ▲	hh:mm hh.mm (A/M) 00.00
ELK: TIME hh/mm	Übernehmen mit enter .	
Tag und Monat	Mit Pfeiltasten ▲	dd.mm 01.01.
	Übernehmen mit enter .	
Jahr	Mit Pfeiltasten ▲ ▾ ◀ ▶ Jahr eingeben.	уууу 2014
	Übernehmen mit enter .	

Uhrzeit und Datum der eingebauten Echtzeituhr sind die Grundlage für die Steuerung von Kalibrier- und Reinigungszyklen. Im Messmodus wird die Uhrzeit mit im Display angezeigt. Bei digitalen Sensoren werden Kalibrierdaten in den Sensorkopf geschrieben. Außerdem sind die Logbucheinträge (vgl. Diagnose) mit einem Zeitstempel versehen.

Hinweise:

- Bei längerer Unterbrechung der Hilfsenergie (> 5 Tage) wird die Uhrzeit im Display mit Strichen dargestellt und ist für die Verarbeitung im Gerät ungültig. Geben Sie in diesem Fall die korrekte Uhrzeit und das korrekte Datum ein.
- Es erfolgt keine automatische Umschaltung von Winter- auf Sommerzeit! Daher bitte die Uhrzeit manuell umschalten!

рΗ

124

Hinweis:

- Kalibriervorgänge dürfen nur von Fachpersonal ausgeführt werden. Falsch eingestellte Parameter bleiben unter Umständen unbemerkt, verändern jedoch die Messeigenschaften.
- Die Einstellzeit des Sensors und des Temperaturfühlers verkürzt sich erheblich, wenn zunächst der Sensor in der Pufferlösung bewegt und anschließend ruhig gehalten wird.

Das Gerät kann nur richtig arbeiten, wenn die verwendeten Pufferlösungen mit dem konfigurierten Puffersatz übereinstimmen. Andere Pufferlösungen, auch mit gleichem Nennwert, können ein anderes Temperaturverhalten aufweisen. Dies führt zu Messfehlern.

Bei Verwendung von ISFET-Sensoren oder Sensoren mit von pH 7

abweichendem Nullpunkt muss nach jedem Sensorwechsel eine Nullpunkteinstellung durchgeführt werden. Nur so erhalten Sie verlässliche Sensoface-Hinweise. Bei allen späteren Kalibrierungen beziehen sich die Sensoface-Hinweise auf diese Grundkalibrierung. Mithilfe der Kalibrierung passen Sie das Gerät an die individuellen Sensoreigenschaften Asymmetriepotenzial und Steilheit an.

Die Kalibrierung kann durch einen Passcode geschützt werden (Menü SERVICE). Im Kalibriermenü wählen Sie zunächst den Kalibriermodus aus:

CAL_PH	je nach Voreinstellung in der Konfigurierung:	
	AUTO	automatische Puffererkennung (Calimatic)
	MAN	manuelle Puffereingabe
	DAT	Eingabe vorgemessener Elektrodendaten
CAL_ORP	ORP-Kalil	brierung
P_CAL	Produktk	alibrierung (Kalibrierung durch Probennahme)
ISFET-ZERO	Nullpunk	tverschiebung. Erforderlich bei Einsatz von ISFET-
	Sensorer	n, im Anschluss kann wahlweise eine Ein- oder Zweipunkt-
	kalibrieru	ung durchgeführt werden.
CAL_RTD	Tempera	turfühlerabgleich

CAL_PH voreinstellen (Menü CONF / Konfigurierung):

- 1) Taste meas lang (> 2 s) drücken (Betriebsart Messen)
- 2) Taste menu drücken das Auswahlmenü erscheint
- 3) Betriebsart CONF mittels Pfeiltasten links / rechts wählen
- 4) Unter "SENSOR", "CALMODE" Modus wählen (AUTO, MAN, DAT). Mit **enter** bestätigen

рΗ

Dieser Abgleich ermöglicht die Verwendung von ISFET-Sensoren mit abweichendem Nullpunkt (nur pH). Die Funktion steht zur Verfügung, wenn bei der Konfigurierung ISFET eingestellt wurde. Bei anderen Sensoren ist die Nullpunktverschiebung inaktiv. Der Abgleich erfolgt mit einem Nullpunkt-Puffer pH 7,00.

Zulässiger Bereich des Pufferwertes: pH 6,5 \dots 7,5. Eingabe temperaturrichtig. Maximale Nullpunktverschiebung: ±200 mV.

Display	Aktion	Bemerkung
	Kalibrierung wählen. Weiter mit enter .	
SFET-ZERO	Kalibrierbereitschaft. Sanduhr blinkt.	Anzeige (3 s)
UF 121mV 213UF	Sensor in einen pH 7,00-Puf- fer bringen. Geben Sie mithilfe der Pfeiltasten den temperaturrichtigen pH- Wert im Bereich 6,50 7,50 ein (siehe Puffertabelle). Bestätigen mit enter	Wenn der Nullpunktfeh- ler des Sensors zu groß ist (> ±200 mV), wird eine Fehlermeldung CAL ERR erzeugt. Eine Kali- brierung ist dann nicht möglich.
₹ 128ml/27.3°C ∎■	Stabilitätsprüfung. Gemessener Wert [mV] wird angezeigt. Das Symbol "Sanduhr" blinkt.	Hinweis: Ein Abbruch der Stabilitätsprüfung ist möglich (enter drücken). Die Genauigkeit der Ka- librierung wird dadurch jedoch verringert.

126

Nullpunktverschiebung

рН

Display	Aktion	Bemerkung
© 129 ml/ ISFET-ZERO =	Am Ende des Einstellvor- gangs wird die Nullpunkt- verschiebung [mV] des Sensors (bezogen auf 25 °C) angezeigt. Sensoface ist aktiv. Weiter mit enter	Dies ist nicht der end- gültige Kalibrierwert des Sensors! Asymmetrie- potenzial und Steilheit müssen mit einer kom- pletten 2-Punkt-Kalibrie- rung ermittelt werden.
© 123 ₽H MERS REPE, ■	 Mithilfe der Pfeiltasten wählen Sie: Repeat (Wiederholen der Kalibrierung) bzw. Messen Bestätigen mit enter 	
••• 37E 5.7	Sensor wieder in den Prozess bringen. Beenden der Nullpunktkali- brierung mit enter	

Hinweis zur Nullpunktverschiebung:

Nach erfolgter Einstellung der Nullpunktverschiebung muss der Sensor mithilfe der auf den folgenden Seiten beschriebenen Verfahren kalibriert werden.

```
128
```

pH: Automatische Kalibrierung

рН

Der Kalibriermodus AUTO wird in der **Konfigurierung** voreingestellt. Die verwendeten Pufferlösungen müssen mit dem konfigurierten Puffersatz übereinstimmen. Andere Pufferlösungen, auch mit gleichen Nennwerten, können ein anderes Temperaturverhalten aufweisen. Dies führt zu Messfehlern.

Display	Aktion	Bemerkung
	Kalibrierung wählen. Weiter mit enter	
	Kalibrierbereitschaft. Sanduhr blinkt. Kalibriermethode auswäh- Ien: CAL_PH Weiter mit enter	Anzeige (3 s)
₩ [月] 1 1421 2120[■■	Sensor ausbauen, reini- gen, in erste Pufferlösung tauchen (Reihenfolge der Pufferlösungen ist beliebig). Starten mit enter	
	Puffererkennung. Während das Symbol "Sand- uhr" blinkt, verbleibt der Sensor in der ersten Puffer- lösung.	Die Einstellzeit des Sensors verkürzt sich erheblich, wenn Sie den Sensor zunächst in der Pufferlösung bewegen
 Buffer	Puffererkennung beendet, der Puffernennwert wird angezeigt, anschließend Nullpunkt und Temperatur.	und dann ruhig halten.

pH: Automatische Kalibrierung

рΗ

Display	Aktion	Bemerkung
	Stabilitätsprüfung. Gemessener Wert [mV] wird angezeigt, "CAL2" und "enter" blinken. Die Kalibrierung mit dem ersten Puffer ist beendet. Sensor aus der ersten Puff- erlösung nehmen, gründlich abspülen. Mittels Pfeiltasten wählen	Hinweis: Ein Abbruch der Stabili- tätsprüfung ist nach 10 s möglich (enter drücken). Die Genauigkeit der Kalibrierung wird da- durch jedoch verringert. Display bei Auswahl 1-PktKalibrierung:
	 Sie: 1-Pkt-Kal. (END) 2-Pkt-Kal. (CAL2) Wiederholung (REPEAT) Weiter mit enter 	Sensoface ist aktiv. Beenden mit enter
	2-Punkt-Kalibrierung: Sensor in die zweite Pufferlö- sung tauchen. Starten mit enter	Der Kalibriervorgang läuft ab wie beim ersten Puffer.
	Sensor aus zweitem Puffer ziehen, abspülen, wieder einbauen. Weiter mit enter	Steilheit und Asymmet- riepotenzial des Sensors (bezogen auf 25 °C) werden angezeigt.
© 485 ₽H MER5 , 	 Mittels Pfeiltasten wählen Sie: Beenden (MEAS) Wiederholung (REPEAT) Weiter mit enter 	Bei Beenden der 2-PktKalibrierung:

129

130

рΗ

Der Kalibriermodus MAN und die Art der Temperaturerfassung werden in der **Kon-figurierung** voreingestellt. Bei der Kalibrierung mit manueller Puffervorgabe muss der pH-Wert der verwendeten Pufferlösung temperaturrichtig ins Gerät eingegeben werden. Die Kalibrierung kann mit jeder beliebigen Pufferlösung erfolgen.

Display	Aktion	Bemerkung
	Kalibrierung wählen. Weiter mit enter .	
© CRL BUFFER MANUAL	Kalibrierbereitschaft. Sanduhr blinkt.	Anzeige (3 s)
а С Я Ц М 1 1947 5 НЧ5СГ С	Sensor und Temperaturfüh- ler ausbauen, reinigen, in erste Pufferlösung tauchen. Starten mit enter	Bei Konfigurierung auf "manuelle Tempera- tureingabe" blinkt der Temperaturwert im Display und kann mit den Pfeiltasten editiert werden.
	pH-Wert der Pufferlösung temperaturrichtig einge- ben. Während die "Sanduhr" blinkt, verbleiben Sensor und Temperaturfühler in der Pufferlösung.	Die Einstellzeit des Sensors und des Tempe- raturfühlers verkürzt sich erheblich, wenn Sie den Sensor zunächst in der Pufferlösung bewegen und dann ruhig halten.

pH: Manuelle Kalibrierung

рΗ

Display	Aktion	Bemerkung
	Ist die Stabilitätsprüfung abgeschlossen, wird der Wert übernommen und das Asymmetriepotenzial angezeigt. Die Kalibrierung mit dem ersten Puffer ist beendet. Sensor und Temperatur- fühler aus der ersten Puffer- lösung nehmen, gründlich abspülen. Mittels Pfeiltasten wählen Sie: • 1-Pkt-Kal. (END) • 2-Pkt-Kal. (CAL2) • Wiederholung (REPEAT) Weiter mit enter 2-Punkt-Kalibrierung: Sensor und Temperaturfüh- ler in die zweite Pufferlösung tauchen. pH-Wert eingeben.	Hinweis: Ein Abbruch der Stabili- tätsprüfung ist nach 10 s möglich (enter drücken). Die Genauigkeit der Kalibrierung wird da- durch jedoch verringert. Display bei Auswahl 1-PktKalibrierung:
	Starten mit enter Sensor mit Temperaturfühler abspülen, wieder einbauen. Weiter mit enter	Anzeige Steilheit und Asymmetriepotenzial des Sensors (bezogen auf 25 °C).
© 485 PH MER5 ,	 Mittels Pfeiltasten wählen Sie: Beenden (MEAS) Wiederholung (REPEAT) Weiter mit enter 	Bei Beenden der 2-PktKalibrierung:

131

pН

pH: vorgemessene Sensoren

Der Kalibriermodus DAT muss in der Konfigurierung voreingestellt sein.

Die Werte für Steilheit und Asymmetriepotenzial eines Sensors können direkt eingegeben werden. Die Werte müssen bekannt sein, also z. B. vorher im Labor ermittelt worden sein.

Display	Aktion	Bemerkung
	Kalibrierung wählen. Weiter mit enter .	
	"Data Input" Kalibrierbereitschaft. Sanduhr blinkt.	Anzeige (3 s)
	Asymmetriepotenzial [mV] eingeben. Weiter mit enter	
	Steilheit [%] eingeben.	
	Das Gerät zeigt die neue Steilheit und das Asymme- triepotenzial (bei 25 °C) an. Sensoface ist aktiv.	
	 Mittels Pfeiltasten wählen Sie: Beenden (MEAS) Wiederholung (REPEAT) Weiter mit enter 	

Steilheit: % in mV umrechnen

рΗ

Umrechnung der Steilheit [%] in [mV] bei 25 °C

-	
%	mV
78	46,2
80	47,4
82	48,5
84	49,7
86	50,9
88	52,1
90	53,3
92	54,5
94	55,6
96	56,8
98	58,0
100	59,2
102	60,4

Umrechnung: Asymmetriepotenzial in Sensornullpunkt

$$\frac{U_{AS}[mV]}{S[mV]}$$

$$NPKT = 7 - \frac{U_{AS}[mV]}{S[mV]}$$

$$V_{AS} = Asymmetriepotenzial$$

$$S = Steilheit$$

Redox-Kalibrierung (ORP)

рΗ

134

Mit einer Redox-Pufferlösung kann die Spannung eines Redoxsensors kalibriert werden. Dabei wird entsprechend folgender Formel die Spannungsdifferenz zwischen der Messspannung und der angegebenen Spannung der Kalibrierlösung festgestellt. Bei der Messung wird diese Differenz vom Gerät zur Messspannung addiert.

Möglich ist auch, die Sensorspannung auf ein anderes Bezugssystem – z. B. die Standard-Wasserstoffelektrode – zu beziehen. Hierzu ist bei der Kalibrierung das temperaturrichtige Potenzial (siehe Tabelle) der verwendeten Bezugselektrode einzugeben, das dann bei der Messung zu der gemessenen Redoxspannung addiert wird. Zu beachten ist, dass die Messung bei der gleichen Temperatur wie bei der Kalibrierung durchgeführt wird, da der Temperaturgang der Bezugselektrode nicht automatisch berücksichtigt wird.

Temperatur [°C]	Ag/AgCl/KCl 1 mol/l [ΔmV]	Ag/AgCl/KCl 3 mol/l [ΔmV]	Thalamid [ΔmV]	Quecksilber- sulfat [∆mV]
0	249	224	-559	672
10	244	217	-564	664
20	240	211	-569	655
25	236	207	-571	651
30	233	203	-574	647
40	227	196	-580	639
50	221	188	-585	631
60	214	180	-592	623
70	207	172	-598	613
80	200	163	-605	603

Temperaturabhängigkeit verschiedener Bezugssysteme gemessen gegen SWE

Redox-Kalibrierung (ORP)

рΗ

135

Display	Aktion	Bemerkung
	ORP-Kalibrierung wählen. Weiter mit enter	
	Sensor und Temperaturfüh- ler ausbauen, reinigen und in den Redox-Puffer tauchen.	Anzeige (3 s)
CLUTION 215°C	Eingabe Sollwert Redox-Puffer. Weiter mit enter	
	Der ORP-Deltawert wird an- gezeigt (bezogen auf 25 °C). Sensoface ist aktiv. Weiter mit enter	
i MERS MERS	Kalibrierung wiederholen: REPEAT wählen Kalibrierung beenden: MEAS wählen, dann enter	

рΗ

Oxy Cond

(Beispiel: pH)

Kalibrierung durch Probennahme (Einpunktkalibrierung).

Während der Produktkalibrierung verbleibt der Sensor im Messmedium.

Der Messprozess wird nur kurz unterbrochen.

Ablauf:

1) Die Probe wird im Labor oder vor Ort mit einem portablen Batteriemessgerät ausgemessen. Für eine genaue Kalibrierung ist es notwendig, dass Probentemperatur und Prozessmesstemperatur übereinstimmen.

Bei der Probennahme speichert das Gerät den aktuellen Wert ab und geht wieder in den Messmodus, der Statusbalken "Kalibrierung" blinkt.

2) Der Probenmesswert wird in das Gerät eingegeben. Aus der Differenz zwischen gespeichertem Messwert und eingegebenem Probenmesswert ermittelt das Gerät das neue Asymmetriepotenzial.

Ist die Probe ungültig, kann der bei Probennahme gespeicherte Wert übernommen werden. Damit werden die alten Kalibrierwerte gespeichert. Anschließend kann eine neue Produktkalibrierung gestartet werden.

Display	Aktion	Bemerkung
	Produktkalibrierung wählen: P_CAL Weiter mit enter	Falls ein Passcode für die Kalibrierung im Menü Service vergeben wurde, geht das Gerät bei un- gültigem Code zurück in den Messmodus.
PRODUCT STEP 1	Kalibrierbereitschaft. Sanduhr blinkt. Weiter mit enter	Anzeige (3 s)
H.J.J.PH Store value	Probennahme und Speichern des Wertes. Weiter mit enter	Die Probe kann nun im Labor ausgemessen werden.

Produktkalibrierung

рН || Оху |

Cond

Display	Aktion	Bemerkung
Hq EF,H ©	Gerät kehrt zurück in den Messmodus.	Durch Blinken des CAL-Statusbalkens wird angezeigt, dass die Pro- duktkalibrierung noch nicht abgeschlossen ist.
RODUET STEP 2	Produktkalibrierung 2. Schritt: Wenn der Probenwert vorliegt, erneuter Aufruf der Produktkalibrierung (P_CAL).	Anzeige (3 s)
لا المعالم المحالي المعالم المحالي المحالي	Der gespeicherte Wert wird angezeigt (blinkt) und kann durch den Probenmesswert überschrieben werden. Weiter mit enter	
E SOLO ZERO 23 mV	Anzeige des neuen Asym- metriepotenzials (bezogen auf 25 °C). Sensoface ist aktiv. Kalibrierung beenden: MEAS wählen, enter	Kalibrierung wieder- holen: REPEAT wählen, dann enter
Kalibrierung beendet.		

137

Оху

Mithilfe der Kalibrierung passen Sie das Gerät an die individuellen Sensoreigenschaften an.

Empfehlenswert ist immer eine Kalibrierung an Luft.

Luft ist – im Vergleich zu Wasser – ein leicht handhabbares, stabiles und damit sicheres Kalibriermedium. Allerdings muss der Sensor für eine Kalibrierung an Luft meist ausgebaut werden.

In biotechnologischen Prozessen, die unter sterilen Bedingungen laufen, ist ein Ausbau des Sensors zum Kalibrieren nicht möglich. Hier muss direkt im Medium (z. B. nach Sterilisation unter Zuleitung von Begasungsluft) kalibriert werden.

In der Praxis hat sich herausgestellt, dass z. B. in der Biotechnologie oft die Sättigung gemessen wird und aus Sterilitätsgründen im Medium kalibriert werden muss. In anderen Anwendungen, wo die Konzentration gemessen wird (Gewässer etc.), wird hingegen vorteilhaft an Luft kalibriert.

Hinweis

Kalibriervorgänge dürfen nur von Fachpersonal ausgeführt werden. Falsch eingestellte Parameter bleiben unter Umständen unbemerkt, verändern jedoch die Messeigenschaften.

Оху

139

Oft gebrauchte Kombination Messgröße / Kalibriermodus

Messung	Kalibrierung	Anwendung
Sättigung	Wasser	Bio-Technologie; Sensor kann zum Kalibrie-
		ren nicht ausgebaut werden (Sterilität)
Konzentration	Luft	Wässer, offene Becken

Im Folgenden ist der Kalibrierablauf für eine Steilheitskalibrierung an Luft dargestellt. Selbstverständlich sind andere Kombinationen aus Messgröße und Kalibriermodus möglich. 140

Оху

Display	Aktion	Bemerkung
ERL Medium Air	Kalibrierung anwählen. Sensor an Luft bringen, starten mit enter	"Medium water" oder "Medium air" wird in der Konfigurierung einge- stellt.
	Eingabe relative Feuchte mittels Pfeiltasten Weiter mit enter	Vorgabe relative Feuchte in Luft: rH = 50%
	Eingabe des Kalibrierdrucks mittels Pfeiltasten Weiter mit enter	Vorgabe: 1.000 bar Einheit bar/kpa/PSI
	Driftkontrolle: Anzeige von: Sensorstrom (nA), Einstellzeit (s), Temperatur (°C/°F) Weiter mit enter	Driftkontrolle kann eini- ge Minuten dauern.
	Anzeige der Kalibrierdaten (Steilheit und Nullpunkt). Weiter mit enter	
	Messwertanzeige in der ein- gestellten Messgröße (hier: Vol%). MEAS beendet die Kalibrie- rung, REPEAT erlaubt die Wiederholung.	

Steilheitskalibrierung Wasser

141

Оху

Display	Aktion	Bemerkung
	Kalibrierung wählen (SLOPE). Sensor in Kalibriermedium bringen, starten mit enter	"Medium water" oder "Medium air" wird in der Konfigurierung einge- stellt.
	Eingabe des Kalibrierdrucks Weiter mit enter	Vorgabe: 1.000 bar Einheit bar/kpa/PSI
	Driftkontrolle: Anzeige von: Sensorstrom (nA), Einstellzeit (s), Temperatur (°C/°F)	Driftkontrolle kann län- ger dauern
	Anzeige der Kalibrierdaten (Steilheit und Nullpunkt) und Sensoface Weiter mit enter	Bezogen auf 25 °C und 1013 mbar
© 8.2 3 meqq 6 5.8 MERS REPE, ■	Messwertanzeige der ge- wählten Messgröße. Kalibrierung beenden: MEAS wählen 4 >, dann enter	Kalibrierung wieder- holen: REPEAT wählen ◀ ▶, dann enter
••• 6003 346 •••	Sensor wieder in den Prozess bringen. Kalibrierung beendet	

142 LDO

LDO-Kalibrierung

(nur A451N)

Kalibrierung/Justierung optischer Sauerstoffsensor SE 740

Jeder optische Sauerstoffsensor hat eine individuelle Steilheit (Stern-Volmer-Konstante cvs) und einen individuellen Nullpunkt (Phasenwinkel). Beide Werte ändern sich z. B. durch Alterung. Um eine ausreichende Messgenauigkeit bei der Sauerstoff-Messung zu erzielen, muss eine regelmäßige Anpassung an die Sensordaten (Justierung) erfolgen.

Möglichkeiten der Kalibrierung/Justierung

- Automatische Kalibrierung an Wasser/Luft
- Nullpunktkalibrierung
- Produktkalibrierung (Sättigung/Konzentration/Partialdruck)
- Offsetkorrektur

Empfehlungen zur Kalibrierung

Empfehlenswert ist immer eine Kalibrierung an Luft. Luft ist – im Vergleich zu Wasser – ein leicht handhabbares, stabiles und damit sicheres Kalibriermedium. Allerdings muss der Sensor für eine Kalibrierung an Luft meist ausgebaut werden. In gewissen Prozessen ist ein Ausbau des Sensors zum Kalibrieren nicht möglich. Hier muss direkt im Medium kalibriert werden (z. B. durch eine Produktkalibrierung).

Bei Temperaturunterschied zwischen Kalibrier- und Messmedium benötigt der Sensor vor und nach dem Kalibrieren eine Angleichzeit von einigen Minuten im jeweiligen Medium, um stabile Messwerte zu liefern. Die Art der Kalibrierdruckerfassung wird in der Parametrierung voreingestellt.

LDC

```
144
```

LDO

LDO-Steilheitskalibrierung an Luft

(nur A451N)

Die automatische Kalibrierung an Luft

Die Steilheitskorrektur erfolgt mit dem Sättigungswert (100 %), analog zur Sättigung von Wasser mit Luft. Da diese Analogie genau nur für wasserdampfgesättigte Luft (100 % relative Feuchte) gilt, oft aber mit Luft geringerer Feuchte kalibriert wird, wird als Vorgabewert zusätzlich die relative Feuchte der Kalibrierluft benötigt. Wenn die relative Feuchte der Kalibrierluft nicht bekannt ist, gelten näherungsweise folgende Richtwerte für eine hinreichend genaue Kalibrierung:

- Umgebungsluft: 50 % rel. Feuchte (mittlerer Wert)
- Flaschengas (synthetische Luft): 0 % rel. Feuchte

Achtung!

Die Sensormembran muss trocken sein. Während der Kalibrierung müssen Temperatur und Druck konstant bleiben. Bei Temperaturunterschied zwischen Kalibrier- und Messmedium benötigt der Sensor vor und nach dem Kalibrieren eine Angleichzeit von einigen Minuten.
LDO-Steilheitskalibrierung an Luft

145

LDO

Display	Aktion	Bemerkung
	Kalibrierung anwählen. Sensor an Luft bringen, starten mit enter . Gerät geht in den HOLD- Zustand.	"CAL WATER" oder "CAL AIR" wird in der Kon- figurierung eingestellt.
	Eingabe relative Feuchte mittels Pfeiltasten Weiter mit enter	Vorgabe relative Feuchte in Luft: rH = 50%
	Eingabe des Kalibrierdrucks mittels Pfeiltasten Weiter mit enter	Vorgabe: 1.013 bar Einheit bar/kpa/PSI
2 123 ¹ 120 5 213 °C	Driftkontrolle: Anzeige von: Partialdruck (hPa), Einstellzeit (s), Temperatur (°C/°F) Weiter mit enter	Driftkontrolle kann einige Minuten dauern.
ERD 1429 GRU	Anzeige der Kalibrierdaten, Sensoface und Stern-Volmer-Konstante Weiter mit enter	
	Messwertanzeige in der eingestellten Messgröße. Das Gerät befindet sich noch im HOLD-Zustand: Sensor einbauen und prüfen, ob die Messung OK ist. MEAS beendet die Kalibrie- rung, REPEAT erlaubt die Wiederholung.	Ausgänge bleiben nach Beenden der Kalibrie- rung noch kurze Zeit im HOLD-Zustand.

146 LDO-Steilheitskalibrierung in Wasser

LDO

(nur A451N)

Die automatische Kalibrierung in Wasser

Die Steilheitskorrektur erfolgt mit dem Sättigungswert (100 %) bezogen auf den Gleichgewichtszustand mit Luft.

Achtung!

Das Kalibriermedium muss sich im Gleichgewichtszustand mit Luft befinden. Der Sauerstoffaustausch zwischen Wasser und Luft läuft sehr langsam ab. Es dauert daher relativ lange, bis Wasser mit Luftsauerstoff gesättigt ist. Bei Temperaturunterschied zwischen Kalibrier- und Messmedium benötigt der Sensor vor und nach dem Kalibrieren eine Angleichzeit von einigen Minuten.

LDO-Steilheitskalibrierung in Wasser 147

LDO

Display	Aktion	Bemerkung
EAL WATER	Kalibrierung wählen (SLOPE). Sensor in Kalibriermedium bringen, starten mit enter	"CAL WATER" oder "CAL AIR" wird in der Konfigurierung einge- stellt.
	Eingabe des Kalibrierdrucks Weiter mit enter	Vorgabe: 1.013 bar Einheit bar/kpa/PSI
	Driftkontrolle: Anzeige von: Partialdruck (hPa), Einstellzeit (s), Temperatur (°C/°F) Weiter mit enter	Gerät geht in den HOLD-Zustand. Driftkontrolle kann länger dauern.
Image: Second state Image: Second state ZERD Image: Second state	Anzeige der Kalibrierdaten, Sensoface und Stern-Volmer-Konstante Weiter mit enter	Phasenlage bei O ₂ = 0
ata mqq qE588 MEAS REPE, ■	Messwertanzeige der ge- wählten Messgröße. Kalibrierung beenden: MEAS wählen ◀ ▶, dann enter	Kalibrierung wiederholen: REPEAT wählen ◀ ▶, dann enter
• 8.22 ppm 6001 3YE	Sensor wieder in den Prozess bringen. Kalibrierung beendet	Ausgänge bleiben nach Beenden der Kalibrie- rung noch kurze Zeit im HOLD-Zustand.

148

LDO

(nur A451N)

Nullpunkt-Korrektur

Für die Spurenmessung unter 500 ppb wird eine Kalibrierung des Nullpunktes empfohlen.

Wird eine Nullpunkt-Korrektur durchgeführt, dann sollte der Sensor vor Starten der Kalibrierung solange im Kalibriermedium (z. B. N₂ oder Sulfitlösung) verbleiben, bis ein konstanter Messwert erreicht wird. Das kann durchaus einige Minuten in Anspruch nehmen.

Display	Aktion	Bemerkung
ZERO POINT	Kalibrierung anwählen. Sensor an N ₂ bringen, starten mit enter . Gerät geht in den HOLD- Zustand.	"Zero Point" wird in der Konfigurierung einge- stellt.
Z34 5 213 °C	Driftkontrolle: Anzeige von: Partialdruck (hPa), Einstellzeit (s), Temperatur (°C/°F) Weiter mit enter	Driftkontrolle kann eini- ge Minuten dauern.
	Anzeige der Kalibrierdaten, Sensoface und Stern-Volmer-Konstante Weiter mit enter	Phasenlage bei O ₂ =0
© China da i Meas Repe, e	Messwertanzeige der ge- wählten Messgröße. Kalibrierung beenden: MEAS wählen (), dann enter	Kalibrierung wiederholen: REPEAT wählen ◀ ▶, dann enter
	Sensor wieder in den Prozess bringen. Kalibrierung beendet	Ausgänge bleiben nach Beenden der Kalibrie- rung noch kurze Zeit im HOLD-Zustand.

LDO-Offsetkorrektur

(nur A451N)

Bei Messungen im Sauerstoffspurenbereich kann über den Menüpunkt Produktkalibrierung ein Offset eingestellt werden. Die Offsetermittlung ist nur möglich bei einem Messwert < 20 mbar, andernfalls wird eine Steilheitskorrektur durchgeführt und die Stern-Volmer-Konstante im Sensor angepasst.

Der Offset wird im Gerät abgespeichert und nicht im Sensor, er darf max. 2 mbar betragen (ca. 1 % Sat, oder 0,055 ppm bzw. 0,055 mg/l).

Display	Aktion	Bemerkung
PROJUCT STEP 1	Kalibrierbereitschaft. Sanduhr blinkt. Weiter mit enter	Anzeige (3 s)
mqq EGJU BUJAV BADIZ	Messwert speichern mit enter	
PROJUCT STEP 2	Weiter mit enter	
	Der gespeicherte Wert wird angezeigt (blinkt). Offset eingeben. Weiter mit enter	Ein Offset (%) ist einstell- bar, wenn die Sauer- stoffkonzentration unter 20 mbar (20 hPa) liegt.
	Anzeige der Kalibrierdaten, Sensoface und Stern-Volmer-Konstante Weiter mit enter	
i ▲ mqq f E.H 9939 2A3M ₩	Anzeige des OXY-Messwerts. Sensoface ist aktiv. Kalibrierung beenden: MEAS wählen, enter Kalibrierung wiederholen: REPEAT wählen, dann enter	Ausgänge bleiben nach Beenden der Kalibrie- rung für kurze Zeit noch im HOLD-Zustand.

149

LDO

Cond

Leitfähigkeit: Kalibrierung

Eingabe des temperaturrichtigen Werts der Kalibrierlösung mit gleichzeitiger Anzeige des Zellfaktors (Zellkonstante).

Display	Aktion	Bemerkung
SELECT (1): AG CAL CON)	Kalibrierung wählen. Weiter mit enter . Kalibriermethode CAL_SOL auswählen. Weiter mit enter .	
SOLUTION	Kalibrierbereitschaft. Sanduhr blinkt.	Anzeige (3 s)
ة 12 88 م 1052 م 2001 0 10	Sensor in die Kalibrierlösung tauchen. Geben Sie mithilfe der Pfeiltasten den tem- peraturrichtigen Wert der Kalibrierlösung ein (siehe Tabelle). Bestätigen mit enter	Untere Zeile: Anzeige des Zellfaktors und der Temperatur
	Leitfähigkeitsmessung konduktiv (Cond) Der ermittelte Zellfaktor wird angezeigt. Das Symbol "Sanduhr" blinkt. Weiter mit enter	
	Leitfähigkeitsmessung induktiv (Condl) Ermittelter Zellfaktor und Nullpunkt werden angezeigt. Das Symbol "Sanduhr" blinkt. Weiter mit enter	

Kalibrierung mit Kalibrierlösung

Cond

151

Display	Aktion	Bemerkung	
© ;255 m 5/c MEAS REPE, ■	Messwertanzeige in der ein- gestellten Messgröße (hier: mS/cm). MEAS beendet die Kalibrie- rung, REPEAT erlaubt die Wiederholung.		
© 12.5 5 m 5/c 600 ₪ 3¥E	Nach Auswahl von MEAS: Beenden der Kalibrierung mit enter .	Anzeige von Leitfähig- keit und Temperatur, Sensoface ist aktiv. Nach Anzeige von GOOD BYE geht das Ge- rät automatisch in den Messmodus.	

Hinweise:

- Bei der Kalibrierung werden bekannte Kalibrierlösungen mit den zugehörigen temperaturrichtigen Leitfähigkeitswerten verwendet (s. Tabelle auf Kalibrierlösung).
- Die Temperatur muss während des Kalibriervorgangs stabil gehalten werden.

152 Leitfähigkeit induktiv: Kalibrierung

Condl

Hinweis:

 Kalibriervorgänge dürfen nur von Fachpersonal ausgeführt werden. Falsch eingestellte Parameter bleiben unter Umständen unbemerkt, verändern jedoch die Messeigenschaften.

Die Kalibrierung kann erfolgen durch:

- Ermittlung des Zellfaktors mit einer bekannten Kalibrierlösung unter Berücksichtigung der Temperatur
- Vorgabe des Zellfaktors
- Probenentnahme (Produktkalibrierung)
- Nullpunktkalibrierung an Luft oder mit Kalibrierlösung
- Temperaturfühlerabgleich

Hinweis:

Wenn der Sensor im Prozess mit einem Abstand zur Rohr-/ Gefäßwand kleiner 30 mm installiert wird, so ist eine Kalibrierung entweder im eingebauten Zustand durch Probennahme (Produktkalibrierung) oder in einem geeigneten Kalibriergefäß mit gleichen Abmessungen und Material entsprechend den Prozessbedingungen durchzuführen.

Auswahl Kalibriermodus

Mithilfe der Kalibrierung passen Sie das Gerät an die individuellen Sensoreigenschaften an.

Die Kalibrierung kann durch einen Passcode geschützt werden (Menü SERVICE).

Im Kalibriermenü wählen Sie zunächst den Kalibriermodus aus:

CAL_SOL	Kalibrierung mit Kalibrierlösung
CAL_CELL	Kalibrierung durch Eingabe des Zellfaktors
P_CAL	Produktkalibrierung (Kalibrierung durch Probennahme)
CAL_ZERO	Nullpunktkalibrierung
CAL_RTD	Temperaturfühlerabgleich

Kalibrierung durch Eingabe Zellfaktor

153

Condl

Der Wert für den Zellfaktor eines Sensors kann direkt eingegeben werden. Der Wert muss bekannt sein, also z. B. vorher im Labor ermittelt werden. Gleichzeitig werden die gewählte Messgröße und die Temperatur angezeigt. Diese Methode ist für alle Messgrößen geeignet.

Display	Aktion	Bemerkung
SELECT (1):AG CAL CON)	Kalibrierung wählen. Weiter mit enter Kalibriermethode CAL_CELL auswählen. Weiter mit enter	
CELLFACTOR	Kalibrierbereitschaft. Sanduhr blinkt.	Anzeige (3 s)
₩ 1288m5/c 23.40[₩	Zellfaktor eingeben. Weiter mit enter	Gleichzeitig werden die gewählte Messgröße und die Temperatur angezeigt.
	Das Gerät zeigt den ermittel- ten Zellfaktor und Nullpunkt (bei 25 °C) an. Sensoface ist aktiv.	
	 Mittels Pfeiltasten wählen Sie: Beenden (MEAS) Wiederholung (REPEAT) Weiter mit enter 	

Den nominellen Zellfaktor entnehmen Sie bitte den Technischen Daten.

Bei Messung in beengten Gefäßen muss der individuelle Zellfaktor ermittelt werden.

Condl

Nullpunktkalibrierung in sauerstofffreiem Gas

Display	Aktion	Bemerkung	
SELEET ULAGERLEON	Kalibrierung wählen. Weiter mit enter Kalibriermethode CAL_ZERO auswählen. Weiter mit enter		
ZERO POINT	Kalibrierbereitschaft. Sanduhr blinkt.	Anzeige (3 s)	
16:52 12:52 12:52 12:57 12	Kalibrierung in sauerstoff- freiem Gas (z. B. Stickstoff) Eingabe bis unteres Display Null zeigt Weiter mit enter		
	Das Gerät zeigt den Zellfaktor (bei 25 °C) und den Nullpunkt an. Sensoface ist aktiv.		
	 Mittels Pfeiltasten wählen Sie: Beenden (MEAS) Wiederholung (REPEAT) Weiter mit enter 		

Messung	155	
Display	Bemerkung	
	 Das Gerät wird aus den Menüs der Konfigurierung und Kalibrierung mit meas in den Messzustand geschaltet. Im Messmodus zeigt die Hauptanzeige die konfigu- rierte Messgröße (pH, ORP [mV] oder Temperatur), die Nebenanzeige die Uhrzeit, die zweite konfigurierte Messgröße (pH, ORP [mV] oder Temperatur) und der Statusbalken [meas] ist an. Hinweis: Bei längerer Unterbrechung der Hilfsenergie (> 5 Tage) wird die Uhrzeit im Display mit Strichen dargestellt und ist für die Verarbeitung im Gerät un- gültig. Geben Sie in diesem Fall die korrekte Uhrzeit und das korrekte Datum ein. 	

Mit der Taste **meas** können Sie verschiedene Displaydarstellungen nacheinander aufrufen:

- 1) Hauptmesswert
- 2) Nebenmesswert
- 3) Durchfluss
- 4) Druck (nur Oxy)
- 5) Kalkulation (nur Cond-Cond)
- 6) Restkapazität des Ionentauschers (nur Cond-Cond)
- 7) Messwert Sensor A (nur Cond-Cond)
- 8) Messwert Sensor B (nur Cond-Cond)
- 9) Uhrzeit und Datum

Nach 60 s ohne Bedienung geht das Gerät wieder zur Standardanzeige zurück. Einstellung der im Messmodus aktiven Anzeige (MAIN DISPLAY) siehe Seite 31

Bei Anzeige der Restkapazität des Ionentauschers kann dem Gerät direkt ein Wechsel des Ionentauschers mitgeteilt werden, siehe auch Seite 161, Kapitel Service.

- 1) Mit Taste **enter** folgende Anzeige aufrufen: NEW EXCHANGER NO
- 2) Mit ◀ ▶ YES auswählen.
- 3) Bestätigen mit enter.

Im Diagnosemodus können Sie ohne Unterbrechung der Messung folgende Menüpunkte aufrufen:

CALDATA	Kalibrierdaten einsehen
SENSOR	Sensordaten einsehen
SELFTEST	Selbsttest des Geräts auslösen
LOGBOOK	Logbucheinträge anzeigen
MONITOR	aktuelle Messwerte anzeigen
VERSION	Gerätetyp, Softwareversion, Seriennummer anzeigen

Der Diagnosemodus kann durch einen Passcode geschützt werden (Menü SERVICE).

Aktion	Taste	Bemerkung
Diagnose aktivieren	menu	Mit Taste menu das Selektionsmenü aufrufen. (Displayfarbe wechselt auf türkis.) Mit ◀ ▶ DIAG auswählen, bestätigen mit enter
Diagnoseoption wählen		Mit Pfeiltasten ◀ ▶ aus folgender Auswahl wählen: CALDATA, SENSOR, SELFTEST, LOGBOOK, MONITOR, VERSION Weitere Bedienung siehe Folgeseiten
Beenden	meas	Beenden mit meas .

Diagnose

Diagnose

Display	Menüpunkt
	 Geräteselbsttest (Ein Abbruch ist jederzeit mit meas möglich.) 1) Displaytest: Anzeige aller Segmente im Wechsel der drei Hintergrundfarben weiß/grün/rot. Weiter mit enter
	 RAM-Test: Sanduhr blinkt, am EndePASS oderFAIL Weiter mit enter
EEPROMOK	3) EEPROM-Test: Sanduhr blinkt, am EndePASS oderFAIL Weiter mit enter
	 FLASH-Test: Sanduhr blinkt, am EndePASS oderFAIL Weiter mit enter
CHEC K MO⊒ULOK aco ←	5) Modul-Test: Sanduhr blinkt, am EndePASS oderFAIL Zurück in den Messmodus mit enter oder meas

Diagnose

Display	Menüpunkt
Bispidy	Sensormonitor: Anzeige der laufenden Messwerte
	(Beispiel: pH)
d ¦H 5	Mit Pfeiltasten ∢ ► MONITOR auswählen, mit enter
	bestätigen. Mit Pfeiltasten 🔹 🕨 in der unteren Textzeile
diag 4	auswählen: mV_PH, mV_ORP, RTD, TEMP, R_GLASS,
	R_REF, FLOW oder EXCHANGER CAP (wenn einge-
	schaltet).
	Zusätzlich bei digitalen Sensoren: OPERATION TIME,
	SENSOR WEAR, LIFETIME, CIP, SIP und AUTOCLAVE.
	Für ISM-Sensoren außerdem ACT (adaptiver Kali-
	briertimer), TTM (adaptiver Wartungstimer) und DLI
Anzeigebeispiele:	(Dynamic Life Time Indicator). Die gewählte Größe
	wird jeweils automatisch in der Hauptanzeige ange-
	zeigt.
l l l l mi/	Zuruck zur Messung mit meas .
	Angoing m)/ pH
	Anzeige mv_p⊓ (diont zur Validiorung, Sonsor kann z B. mit Kalibriorlö
	sungen beaufschlagt werden oder das Gerät wird mit
╏┍┛╏╖⋳⋎	einem Simulator überprüft)
	Anzeige der dynamischen Reststandzeit
	(nur bei digitalen Sensoren, jedoch nicht bei
n n r r l	MEMOSENS)
ו מכט הו	
(OPERATION TIME)	Anzeige der Sensorbetriebszeit
	(nur bei digitalen Sensoren)
	Version
	Anzeige Gerätetyp, Software-/Hardwareversion
IIII III SW	und Seriennummer für alle Komponenten des Gerä-
(SER:AL-No 00 <u>13)</u>	tes.
diag 🚽	Mit Pfeiltasten ▲ ▼ kann zwischen Software- und
	Hardwareversion umgeschaltet werden. Mit enter
	weiter zur nachsten Geratekomponente.

Service

Im Servicemodus können Sie folgende Menüpunkte aufrufen:

SENSOR	Sensor (Rückstellung von Diagnosemeldungen)	
DEVICE TYPE	Auswahl Messgröße	
MONITOR	Anzeige der Messwerte für Validierungszwecke (Simulatoren)	
NEW EXCHANGER	Bei Wechsel des Ionentauschers Rücksetzen der Verbrauchs-	
	berechnung	
POWER-OUT	Wahl der Ausgangsspannung (nur A451N)	
CODES	Konfigurierung der Passcodes	
DEFAULT	Rücksetzung auf Werkseinstellungen	

Aktion	Taste/Display	Bemerkung
Service aktivieren	menu	Mit Taste menu das Selektionsmenü aufrufen. Mit ◀ ▶ SERVICE auswählen, bestätigen mit enter
Passcode	SSSS PRSSCOJE SERV:	Passcode "5555" für den Service- modus mit den Pfeiltasten ▲ ▼ ◀ ▶ eingeben. Bestätigen mit enter
Anzeige	+ ۲۹۲۲ ۲۱۲۲ ۲۹۲۲ ۲	Im Servicemodus wird das Symbol Service (Schraubenschlüssel) ange- zeigt.
Beenden	meas	Beenden mit meas .

Display	Menüpunkt	
SENSOR/TTM	Adaptiven Wartungstimer zurücksetzen Das Intervall wird hierbei auf den Anfangswert zurückgesetzt. Erforderlich ist dazu die Auswahl von "TTM RESET = YES" mit abschließender Bestätigung durch enter .	
SENSOR / AUTOCLAVE	Autoklavierzähler inkrementieren Nach der Autoklavierung muss der Zählerstand des Autoklavierzählers inkrementiert werden. Erforderlich ist dazu die Auswahl von "YES" mit Bestätigung durch enter. Das Gerät bestätigt mit der Meldung "INCREMENT AUTOCLAVE CYCLE".	
DEVICE TYPE	Device Type: Umschalten des Messverfahrens, z. B. bei Sensor- wechsel Memosens.	
	 Anzeige der laufenden Messwerte (Sensormonitor): Mit Pfeiltasten ↓ > MONITOR auswählen, mit enter bestätigen. Mit Pfeiltasten ↓ > Messgröße in der unteren Textzeile auswählen. Die gewählte Messgröße wird jeweils automatisch in der Hauptanzeige angezeigt. Rückkehr ins Servicemenü meas länger 2s drücken. Zurück zur Messung: erneut meas drücken. 	

Display	Menüpunkt
NEW EXCHANGER	Für die pH-Wert-Berechnung nach VGB (-C6-) kann der Verbrauch des Ionentauschers berechnet werden. Dazu müssen die Verbrauchsberechnung eingeschal- tet (EXCHER CAP ON) sein und die Parameter des Io- nentauschers (Größe, Kapazität, Effizienz) vorgegeben werden. Die Erschöpfung des Ionentauschers wird mit dem Wartungs-Symbol "Schraubenschlüssel" und der Meldung "ERR 111 WARNING CATION EXCHANGER CAPACITY" bzw. mit der Meldung "ERR 110 CATION EXCHANGER CAPACITY" (bei 0 %) signalisiert. Wird der Ionentauscher gewechselt, so muss dies dem Gerät mitgeteilt werden, damit die Berechnung neu initialisiert wird: NEW EXCHANGER YES. Dies ist auch direkt aus dem Messmodus möglich, siehe Seite 155.
POWER OUT (nur A451N)	POWER OUT, Einstellen der Ausgangsspannung Die Ausgangsspannung kann hier zwischen 3,1/12/15/24 V gewählt werden. Wird der optische Sauerstoff-Sensor SE 740 gewählt, so wird automa- tisch eine Ausgangsspannung von 15 V eingestellt, unabhängig von der Einstellung in SERVICE.
	 Passcode einrichten: Im Menü "SERVICE - CODES" können Passcodes eingerichtet werden für den Zugriff auf die Betriebsarten DIAG, CAL, CONF und SERVICE (bereits voreingestellt auf 5555). Bei Verlust des Service-Passcodes ist beim Hersteller unter Angabe der Seriennummer des Gerätes und der Firmware-Version eine "Ambulance-TAN" anzufordern. Zur Eingabe der "Ambulance-TAN" wird die Service-Funktion mit dem Passcode 7321 aufgerufen. Nach korrekter Eingabe der Ambulance-TAN meldet das Gerät für ca. 4 s "PASS" und setzt den Service-Passcode auf 5555 zurück.

Display	Menüpunkt
DEFAULT	Rücksetzen auf Werkseinstellung: Im Menü "SERVICE - DEFAULT" kann das Gerät auf die Werksvoreinstellung zurückgesetzt werden. Achtung! Nach dem Rücksetzen auf die Werksvoreinstellung muss das Gerät komplett neu konfiguriert werden, in- klusive der Sensor-Parameter und der PROFIBUS-Ein- stellungen.

Fehlermeldungen pH

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 01	NO SENSOR	Sensorfehler Gerätetyp nicht zugewiesen Sensor defekt Sensor nicht angeschlossen Sensorkabel unterbrochen
ERR 02	WRONG SENSOR	Falscher Sensor
ERR 03	CANCELED SENSOR	Sensor entwertet
ERR 04	SENSOR FAILURE	Fehler im Sensor
ERR 05	CAL DATA	Fehler in Cal-Daten
ERR 10	ORP RANGE	Anzeigebereich ORP unter-/überschritten
ERR 11	PH RANGE	Anzeigebereich pH unter-/überschritten
ERR 12	MV RANGE	Messbereich mV
ERR 13	TEMPERATURE RANGE	Temperaturbereich unter-/überschritten
ERR 15	SENSOCHECK GLASS-EL	Sensocheck Glas
ERR 16	SENSOCHECK REF-EL	Sensocheck Bezug
ERR 69	TEMP. OUTSIDE TABLE	Temperatur außerhalb Tabel- lenbereich

рΗ

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 94	FB BLOCK ALARM	Alarm im Funktionsblock: z. B. Ziel-Modus und Ist-Modus stimmen nicht überein oder Al-Limits werden überschritten
ERR 95	SYSTEM ERROR	Systemfehler Neustart erforderlich. Falls Fehler so nicht behebbar, Gerät einschicken.
ERR 96	WRONG MODULE	Modul stimmt nicht mit Mess- verfahren überein Korrigieren Sie die Einstellung im Menü SERVICE / DEVICE TYPE. Konfigurieren und Kalibrieren Sie das Gerät anschließend.
ERR 97	NO MODULE INSTALLED	Kein Modul Modul einsetzen
ERR 98	CONFIGURATION ERROR	Fehler Konfigurations- oder Kalibrierdaten Konfigurations- oder Kalibrier- daten defekt, konfigurieren und kalibrieren Sie das Gerät komplett neu.
ERR 99	DEVICE FAILURE	Abgleichdaten defekt
ERR 102	рН: FAILURE BUFFERSET -U1-	Parametrierfehler kundenspezifischer Puffersatz U1

Fehlermeldungen Cond

Fehler ERR 01	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste) NO SENSOR	Problem mögliche Ursache Sensorfehler Gerätetyp nicht zugewiesen Sensor defekt Sensor nicht angeschlossen
ERR 02	WRONG SENSOR	Falscher Sensor
ERR 03	CANCELED SENSOR	Sensor entwertet
ERR 04	SENSOR FAILURE	Fehler im Sensor
ERR 05	CAL DATA	Fehler in Cal-Daten
ERR 10	CONDUCTANCE TOO HIGH	Messbereich Leitwert überschritten Leitwert > +3500 mS
ERR 11	RANGE CONDUCTIVITY RANGE CONCENTRATION RANGE SALINITY LIMIT USP	Messbereich unter-/überschritten Leitfähigkeit > +999,9 mS/cm oder > +99,99 S/m oder < 1 MΩ cm Konzentration > Tabellengrenze (siehe Seite 324 ff) Salinität > 45,0 ‰ Leitfähigkeit ≥ USP-Grenzwert
ERR 13	RANGE TEMPERATURE	Temperaturbereich unter-/überschritten (siehe Seite 304)
ERR 15	SENSOCHECK	Sensocheck

Cond

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 94	FB BLOCK ALARM	Alarm im Funktionsblock
ERR 95	SYSTEM ERROR	Systemfehler Neustart erforderlich. Falls Fehler so nicht behebbar, Gerät einschicken.
ERR 96	WRONG MODULE	Modul stimmt nicht mit Mess- verfahren überein Korrigieren Sie die Einstellung im Menü SERVICE / DEVICE TYPE. Konfigurieren und Kalibrieren Sie das Gerät anschließend.
ERR 97	NO MODULE INSTALLED	Kein Modul Modul einsetzen
ERR 98	CONFIGURATION FAILURE	Fehler Konfigurations- oder Kalibrierdaten Konfigurations- oder Kalibrier- daten defekt, konfigurieren und kalibrieren Sie das Gerät komplett neu.
ERR 99	SYSTEM FAILURE	Abgleichdaten defekt

Fehlermeldungen Condl

169

Fehler ERR 01	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste) NO SENSOR	Problem mögliche Ursache Sensorfehler
		Sensor defekt Sensor nicht angeschlossen Sensorkabel unterbrochen
ERR 02	WRONG SENSOR	Falscher Sensor
ERR 03	CANCELED SENSOR	Sensor entwertet
ERR 04	SENSOR FAILURE	Fehler im Sensor
ERR 05	CAL DATA	Fehler in Cal-Daten
ERR 10	CONDUCTANCE TOO HIGH	Messbereich Leitwert überschritten Leitwert > +3500 mS
ERR 11	RANGE CONDUCTIVITY RANGE CONCENTRATION RANGE SALINITY	Messbereich unter-/überschrittenLeitfähigkeit > +1999 mS/cm oder> +99,99 S/m oder < 1 MΩ cmKonzentration > Tabellengrenze (siehe Seite 324 ff)Salinität > 45,0 ‰
ERR 13	RANGE TEMPERATURE	Temperaturbereich unter-/überschritten (siehe Seite 304)
ERR 15	SENSOCHECK	Sensocheck
ERR 69	TEMP. OUTSIDE TABLE	Temp. außerhalb Tabellenbereiche

Condl

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 94	FB BLOCK ALARM	Alarm im Funktionsblock
ERR 95	SYSTEM ERROR	Systemfehler Neustart erforderlich. Falls Fehler so nicht behebbar, Gerät einschicken.
ERR 96	WRONG MODULE	Modul stimmt nicht mit Mess- verfahren überein Korrigieren Sie die Einstellung im Menü SERVICE / DEVICE TYPE. Konfigurieren und Kalibrieren Sie das Gerät anschließend.
ERR 97	NO MODULE INSTALLED	Kein Modul Modul einsetzen
ERR 98	CONFIGURATION FAILURE	Fehler Konfigurations- oder Kalibrierdaten Konfigurations- oder Kalibrier- daten defekt, konfigurieren und kalibrieren Sie das Gerät komplett neu.
ERR 99	SYSTEM FAILURE	Abgleichdaten defekt

Fehlermeldungen Oxy

171

Fehler	Info-Text	Problem
	auf die Info-Taste)	mögliche Ursache
ERR 01	NO SENSOR	Sensorfehler
		Gerätetyp nicht zugewiesen
		Sensor defekt
		Sensor nicht angeschlossen
		Sensorkabel unterbrochen
ERR 02	WRONG SENSOR	Falscher Sensor
ERR 03	CANCELED SENSOR	Sensor entwertet
ERR 04	SENSOR FAILURE	Fehler im Sensor
ERR 05	CAL DATA	Fehler in Cal-Daten
ERR 11	RANGE DO SATURATION	Anzeigebereich
	RANGE DO CONCENTRATION	unter-/überschritten
	RANGE GAS CONCENTRATION	SAT Sättigung [%] oder
		CONC Konzentration oder
		GAS Vol-Konzentration
ERR 12	RANGE SENSOR CURRENT	Sensorstrom überschritten
ERR 13	TEMPERATURE RANGE	Temperaturbereich
		unter-/überschritten
ERR 14	OUT OF INTERNAL TABLE	Tabellen überschritten
ERR 15	SENSOCHECK	Sensocheck
ERR 17	OUT OF CAL TIME CALIBRATE	Kalibriertimer abgelaufen
	OR CHANGE SENSOR	(ACT bei ISM)
ERR 18	SENSOR ZERO/SLOPE CALI-	Kalibriertimer abgelaufen
	BRATE OR CHANGE SENSOR	(ACT bei ISM)

Оху

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 20	SENSOR DRIFT CALIBRATE OR CHANGE SENSOR	Sensor Einstellzeit
ERR 21	SENSOR WEAR CHECK ELECTROLYTE AND MEMBRANE	Sensorverschleiß Memosens
ERR 22	CIP-CYCLES OVERRUN	CIP-Zyklen überschritten
ERR 23	SIP-CYCLES OVERRUN	SIP-Zyklen überschritten
ERR 24	ZERO xx.xx nA	Nullpunkt
ERR 25	SLOPE xxxx nA	Steilheit
ERR 26	TMAX xxx.x °C	Temp. max (CIP/SIP)
ERR 27	OXY VALUE NOT VALID	LDO OXY-Messung aus

Fehlermeldungen Oxy

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 94	FB BLOCK ALARM	Alarm im Funktionsblock
ERR 95	SYSTEM ERROR	Systemfehler Neustart erforderlich. Falls Fehler so nicht behebbar, Gerät einschicken.
ERR 96	WRONG MODULE	Modul stimmt nicht mit Mess- verfahren überein Korrigieren Sie die Einstellung im Menü SERVICE / DEVICE TYPE. Konfigurieren und Kalibrieren Sie das Gerät anschließend.
ERR 97	NO MODULE INSTALLED	Kein Modul Modul einsetzen
ERR 98	CONFIGURATION FAILURE	Fehler Konfigurations- oder Kalibrierdaten Konfigurations- oder Kalibrier- daten defekt, konfigurieren und kalibrieren Sie das Gerät komplett neu.
ERR 99	SYSTEM FAILURE	Abgleichdaten defekt
ERR 102	INVALID PARAMETER U-POL	Parametrierfehler Polarisations- spannung
ERR 103	INVALID PARAMETER MEMBR. COMP	Parametrierfehler Membran- korrektur

CC

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 01	NO SENSOR	Sensorfehler Gerätetyp nicht zugewiesen Sensor defekt Sensor nicht angeschlossen Sensorkabel unterbrochen
ERR 02	WRONG SENSOR	Falscher Sensor
ERR 03	CANCELED SENSOR	Sensor entwertet
ERR 04	SENSOR FAILURE	Fehler im Sensor
ERR 05	CAL DATA	Fehler in Cal-Daten
Kanal A		
ERR 10	A CONDUCTANCE TOO HIGH	Messbereich Leitwert über- schritten > 250 mS
ERR 11	A RANGE CONDUCTANCE	Cond > 9999 μS/cm oder < 0,1 kΩ cm
ERR 13	A CONDUCTANCE TOO HIGH	Temperaturbereich unter-/ überschritten
ERR 15	A SENSOCHECK	Sensocheck
Kanal B	3	
ERR 40	B CONDUCTANCE TOO HIGH	Messbereich Leitwert über- schritten > 250 mS
ERR 41	B RANGE CONDUCTANCE	Cond > 9999 μS/cm oder < 0,1 kΩ cm
ERR 43	B CONDUCTANCE TOO HIGH	Temperaturbereich unter-/ überschritten
ERR 45	B SENSOCHECK	Sensocheck

CC

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 59	INVALID CALCULATION	Berechnungen ungültig
ERR 74	CATION EXCHANGER INVALID CALCULATION	Fehler bei der Berechnung Kationentauscher Zu niedriger oder kein Durchfluss: Durchfluss ≤ 4,00 l/h Berechneter pH-Wert: < 7,5 oder > 10,5 Leitfähigkeitswerte: B ≥ 3 x A
ERR 94	FB BLOCK ALARM	Alarm im Funktionsblock
ERR 95 ERR 96	SYSTEM ERROR WRONG MODULE	Systemfehler Neustart erforderlich. Falls Fehler so nicht behebbar, Gerät einschicken. Modul stimmt nicht mit Mess-
		verfahren überein Korrigieren Sie die Einstellung im Menü SERVICE / DEVICE TYPE. Konfigurieren und Kalibrieren Sie das Gerät anschließend.
ERR 97	NO MODULE INSTALLED	Kein Modul Modul einsetzen
ERR 98	CONFIGURATION FAILURE	Fehler Konfigurations- oder Kalibrierdaten Konfigurations- oder Kalibrier- daten defekt, konfigurieren und kalibrieren Sie das Gerät kom- plett neu.
ERR 99	SYSTEM FAILURE	Abgleichdaten defekt

СС

Fehler	Info-Text (erscheint im Fehlerfall bei Druck auf die Info-Taste)	Problem mögliche Ursache
ERR 110	CATION EXCHANGER CAPACITY	Kapazität des lonentauschers erschöpft – wechseln
ERR 111	WARNING CATION EXCHANGER CAPACITY	Kapazität des lonentauschers fast erschöpft – demnächst wech- seln.

Sensocheck und Sensoface

Sensocheck

Sensocheck überwacht kontinuierlich den Sensor und die Zuleitungen. Die Sensocheck-Meldung wird auch als Fehlermeldung ERR 15 bzw. ERR 45 ausgegeben: Der Status des Messwertes wird schlecht. Sensocheck kann im Menü "Konfigurierung" abgeschaltet werden (damit ist auch Sensoface deaktiviert!).

Sensoface

Die drei Sensoface-Piktogramme auf dem Display geben Diagnose-Hinweise auf Wartungsbedarf des Sensors. Zusätzliche Displaysymbole verweisen auf die Fehlerursache. Mit der Taste **info** kann ein Hinweis abgerufen werden.

Hinweis: Die Verschlechterung eines Sensoface-Kriteriums führt zur Abwertung der Sensoface-Anzeige (Smiley wird "traurig"). Eine Aufwertung der Sensoface-Anzeige kann nur durch eine Kalibrierung oder durch Beheben des Sensordefekts erfolgen.

Sensoface ist automatisch deaktiviert, wenn Sensocheck abgeschaltet wurde. Ausnahme: Nach Abschluss einer Kalibrierung wird zur Bestätigung immer ein Smiley angezeigt.

Entsorgung

Zur sachgemäßen Entsorgung des Produkts sind die lokalen Vorschriften und Gesetze zu befolgen.

Rücksendung

Das Produkt bei Bedarf in gereinigtem Zustand und sicher verpackt an die zuständige lokale Vertretung senden, siehe www.knick.de.

Lieferprogramm PROFIBUS PA

Standardausführung	Bestell-Nr.
Stratos Pro A221N	A221N
(Basisgerät zur Messung mit digitalen Sensoren)	
Wechselmodule zur Messung mit analogen Sensoren	
рН	MK-PH015N
Оху	MK-OXY046N
Cond	MK-COND025N
Condl	MK-CONDI035N
CC	MK-CC065N
Ausführung für den Ex-Bereich	Bestell-Nr.
Stratos Pro A221X	A221X
(Basisgerät zur Messung mit digitalen Sensoren)	
Wechselmodule zur Messung mit analogen Sensoren	
pH, Ex	MK-PH015X
Oxy, Ex	MK-OXY045X
Cond, Ex	MK-COND025X
Condl, Ex	MK-CONDI035X
Zubehör	Bestell-Nr.
Mastmontagesatz	ZU 0274
Schalttafelmontagesatz	ZU 0738
Schutzdach	ZU 0737

Für weitere Informationen oder Fragen zu unserem Lieferprogramm stehen wir Ihnen gerne zur Verfügung:

Knick Elektronische Messgeräte GmbH & Co. KG

Telefon:	+49 30 80191-0
Telefax:	+49 30 80191-200
E-Mail:	info@knick.de
Internet:	www.knick.de

Standardausführung	Bestell-Nr.
Stratos Evo A451N	A451N
(Basisgerät zur Messung mit digitalen Sensoren)	
Wechselmodule zur Messung mit analogen Sensoren	
рН	MK-PH015N
Оху	MK-OXY046N
Cond	MK-COND025N
Condl	MK-CONDI035N
СС	MK-CC065N
Zubehör	Bestell-Nr.
Mastmontagesatz	ZU 0274
Schalttafelmontagesatz	ZU 0738
Schutzdach	ZU 0737

Für weitere Informationen oder Fragen zu unserem Lieferprogramm stehen wir Ihnen gerne zur Verfügung:

Knick Elektronische Messgeräte GmbH & Co. KG

 Telefon:
 +49 30 80191-0

 Telefax:
 +49 30 80191-200

 E-Mail:
 info@knick.de

 Internet:
 www.knick.de
Einführung

PROFIBUS ist ein digitales Kommunikationssystem, das dezentral installierte Feldgeräte über ein Kabel miteinander vernetzt und in ein Leitsystem integriert. PROFIBUS löst damit langfristig die 4...20 mA-Technik ab, die nur reine Messwerte liefert.

Vorteile der PROFIBUS-Technik sind:

- einfache und kostensparende Verkabelung
- komfortable Bedienmöglichkeit über zentrales Leitsystem
- Übertragung, Auswertung und Steuerung größerer Datenmengen vom Gerät zur Leitstelle
- Parametrierung und Wartung der in explosionsgefährdeten Bereichen installierten Geräte von der Leitstelle aus

PROFIBUS ist das führende offene Feldbussystem in Europa. Sein Anwendungsbereich umfasst Fertigungs-, Prozess- und Gebäudeautomatisierung. Als offener Feldbusstandard nach der Feldbusnorm EN 50170 und IEC 61158 garantiert PROFIBUS die Kommunikation von verschiedenen Geräten an einer Busleitung.

Die PROFIBUS-Nutzerorganisation (PNO) sorgt für Weiterentwicklung und Pflege der PROFIBUS-Technologie. Sie vereint die Interessen von Nutzern und Herstellern.

Varianten und grundlegende Eigenschaften

PROFIBUS legt die technischen und funktionellen Merkmale eines seriellen Bussystems fest. Es gibt zwei verschiedene PROFIBUS-Varianten:

- **PROFIBUS DP** (Dezentrale Peripherie) ist speziell für die Kommunikation von Automatisierungssystemen und dezentralen Peripheriegeräten zugeschnitten. Er arbeitet nach dem RS-485 Standard mit Übertragungsraten bis zu 12 Mbit/s.
- **PROFIBUS PA** (Prozess-Automation) ist speziell für die Verfahrenstechnik konzipiert und erlaubt den Anschluss von Sensoren und Aktoren auch im explosionsgefährdeten Bereich an eine gemeinsame Busleitung. PROFIBUS PA hat eine Übertragungsrate von 31,25 kBit/s.

PROFIBUS unterscheidet zwei Arten von Geräten:

- **Master**-Geräte bestimmen den Datenverkehr auf dem Bus. Sie versenden Nachrichten ohne externe Aufforderung.
- **Slave**-Geräte sind Peripheriegeräte wie z. B. Ventile, Antriebe, Messumformer und Analysengeräte. Sie können azyklisch auf Fernwartungs-, Parametrierungs- und Diagnoseanweisungen des Masters reagieren. Messdaten mit Status werden zyklisch von der Leitstelle abgefragt.

Zertifizierung der Geräte

PROFIBUS PA/DP ist ein offener Bus-Standard, der es ermöglicht, Geräte verschiedener Hersteller innerhalb eines Systems einzusetzen. Voraussetzung hierfür ist das exakte Einhalten der Vorgaben aus der Spezifikation. Daher werden die Geräte von der Organisation PROFIBUS and PROFINET International (PI) zertifiziert.

Festlegungen für PROFIBUS PA

Das Busprotokoll legt Art und Geschwindigkeit des Datenaustausches zwischen Master- und Slave-Geräten fest und bestimmt das Übertragungsprotokoll des jeweiligen PROFIBUS-Systems.

PROFIBUS PA ermöglicht zyklische und azyklische Dienste.

- **Zyklische Dienste** dienen zur Übertragung von Messdaten und Stellbefehlen mit Statusinformation.
- **Azyklische Dienste** dienen zur Geräteparametrierung, Fernwartung und Diagnose während des Betriebes.

Das Geräteprofil 3.02 legt die Geräteklasse, typische Funktionalitäten durch Parameter, Messbereiche und Grenzwerte verbindlich fest.

Das für den explosionsgefährdeten Bereich entwickelte FISCO-Modell der PTB erlaubt die Zusammenschaltung mehrerer Geräte an eine gemeinsame Busleitung und legt zulässige Grenzen für Geräte- und Kabelparameter fest.

I&M-Funktionen (Identification & Maintenance)

Die Stratos PROFIBUS-Geräte A221N / A211X und A451N unterstützen die Funktion "Identification & Maintenance". I&M-Funktionen legen fest, auf welche Art und Weise bestimmte, das Gerät beschreibende Daten einheitlich abgelegt werden müssen. Sie erlauben durch Angaben zu Hersteller, Ausgabestand, Bestelldaten usw. eine eindeutige Geräteidentifikation. Des Weiteren können Informationen über Projektierung, Inbetriebnahme, Parametrierung, Diagnose usw. abgerufen werden.

Prinzipieller Aufbau

Für den explosionsgeschützten Bereich kann der elektrische Anschluss an PROFIBUS entsprechend FISCO erfolgen.

(FISCO = Fieldbus Intrinsically Safe Concept, www.fieldbus.org)

Unterschiede zwischen PROFIBUS PA und PROFIBUS DP

	PROFIBUS PA	PROFIBUS DP
Max. Datenübertragungsrate	31,25 kbit/s	12 Mbit/s
Einsatz im Ex-Bereich	ja	nein
Energieversorgung über BUS	ja	nein
Anwendung	Fertigungsautomatisie-	Prozessautomatisierung
	rung	
Übertragungstechnik	MBP-IS*)	RS-485

*) Manchester Coded, Bus Powered - Intrinsically Safe (eigensicher)

Control room

Anschlussbelegung PROFIBUS PA

Anschlussbelegung PROFIBUS DP

Um eine sichere Signalübertragung zu gewährleisten, müssen die PROFIBUS-Kabel an den beiden Enden eines PROFIBUS-Segments durch einen Busabschluss abgeschlossen werden (Kombination aus drei Widerständen). Beachten Sie, dass der Busabschluss nicht Bestandteil des Stratos Evo A451N ist.

Prinzipdarstellung Blocktypen PROFIBUS PA

Prinzipdarstellung Blocktypen PROFIBUS DP

Das Blockmodell

Die Geräteparameter im PROFIBUS-Protokoll sind ihren Eigenschaften entsprechend bestimmten Blocktypen zugeordnet. Die unterschiedlichen Blocktypen enthalten Parametergruppen und deren Funktionalitäten.

PROFIBUS strukturiert seine Parameter und Funktionen in Blockobjekte:

- Das Device Management beschreibt die Blockobjekte.
- Einen Physical Block
- Einen oder mehrere Funktionsblöcke (Function Block)
- Einen oder mehrere Übertragungsblöcke (Transducer Block)

Das Stratos Pro A221N / A221X besteht aus folgenden Blöcken:

- 1 x Physical Block
- 1 x Transducer Block (AITB)
- 10 Funktionsblöcke bestehend aus:
 - 8 x AI (Analog Input)
 - 1 x AO (Analog Output)
 - 1 x DI (Digital Input)

Das Stratos Evo A451N besteht aus folgenden Blöcken:

- 1 x Physical Block
- 1 x Transducer Block (AITB)
- 12 Funktionsblöcke bestehend aus:
 - 8 x AI (Analog Input)
 - 1 x AO (Analog Output)
 - 1 x DI (Digital Input)
 - 2 x DO (Digital Output)

Physical Block (PB)

Der Geräteblock enthält gerätespezifische Informationen des Herstellers, die ein Gerät eindeutig charakterisieren wie z. B.: Geräte- und Herstellername, Gerätetyp, Softwareversion, Hardwareversion und Seriennummer.

Rücksetzen

Über den Parameter FACTORY_RESET kann das Gerät auf die Werkseinstellungen zurückgesetzt werden.

Achtung Datenverlust! Setzt alle Werte der Konfigurierung auf die Werksvoreinstellung zurück.

Transducer Block (TB)

Der Transducer Block beinhaltet alle Geräteinformationen, wie Kalibrierdaten und Sensortyp. Es können in einem Gerät mehrere Transducer Blöcke vorhanden sein, wie Diagnose, Prozessvariablen Block oder Anzeige Transducer Block. Das Signal des Sensors wird zuerst im Transducer Block aufbereitet. Dieser leitet den Messwert an die Analog Input Blöcke weiter, wo dieser dann noch weiterverarbeitet werden kann (Grenzwerte, Skalierung). Über den Transducer Block stehen folgende Informationen und Parametriermöglichkeiten zur Verfügung:

- Produktkalibrierung
- Parametrieren
- Logbuch
- Sensordiagnose

Signalverarbeitung

Die Prozessvariablen werden festen Kanälen zugewiesen und mit Eingangsfunktionsblöcken verbunden (AI).

Tastensperre

Über den Parameter DEVICE_LOCK kann in den Betriebsarten CAL, CONF und SERVICE eine Tastensperre eingestellt werden:

- UNLOCKED Gerät kann über Tastatur bedient werden
- LOCKED Tastensperre ist aktiv

Function Block (FB)

Funktionsblöcke beschreiben die Aufgaben und Funktionen eines Gerätes, die durch die im Schedule festgelegten Bearbeitungszeitpläne gesteuert werden.

Die PROFIBUS-Spezifikation beschreibt unterschiedliche Standard-Funktionsblöcke, mit denen sich alle Grundfunktionen beschreiben lassen z. B.:

- Analogausgang (AO)
- Digitalausgang (DO)
- Analogeingang (AI)
- Digitaleingang (DI)

Analogeingang (AI)

Der Funktionsblock AI ist eine universelle Schnittstelle, über die die Prozessvariable auf den PROFIBUS gelangt. AI Funktionsblöcke ermöglichen die Simulation von Einund Ausgang des Funktionsblocks und dienen der zyklischen Messwertübertragung.

Wahl der Prozessvariablen und Einheiten

Die Prozessvariablen des Transducer Blocks werden dem Funktionsblock über den Parameter **Channel** zugewiesen. Passend zur gewählten Prozessvariablen kann über den Parameter **Unit** bzw. den Subparameter **Units** die Einheit gewählt werden.

Al-Block pH		
Messgröße	Channel	Unit
pH-Wert	90	pH = 1422
pH-Spannung	53	mV = 1243
ORP	54	mV = 1243
Glasimpedanz	55	Ω = 1281
Bezugsimpedanz	56	Ω = 1281
Temperatur	57	°C = 1001 °F = 1002
Steilheit	60	% = 1342
Nullpunkt	62	mV = 1243
Kalibriertimer	59	h = 1059
Verschleiß	63	% = 1342
Durchfluss	64	l/h = 1353

AI-Block Oxy		
Messgröße	Channel	Unit
Sättigung	90	% = 1342
Konzentration	66	ppm = 1423 mg/l = 1558
Vol-Konzentration	68	Vol% = 1562
Partialdruck	69	mbar = 1138
Temperatur	57	°C = 1001 °F = 1002
Steilheit	60	nA = 1213
Nullpunkt	62	nA = 1213
Kalibriertimer	59	h = 1059
Verschleiß	63	% = 1342
Durchfluss	64	l/h = 1353

AI-Block Cond		
Messgröße	Channel	Unit
Leitfähigkeit	90	μS/cm = 1552
Temperatur	57	°C = 1001 °F = 1002
Konzentration	73	% = 1342
Salinität	75	g/kg = 1523
TDS	76	mg/l = 1558
Spezifischer Widerstand	72	MΩ * cm = 1555
Zellfaktor	79	1/cm = 1524
Durchfluss	64	l/h = 1353

AI-Block Condi		
Messgröße	Channel	Unit
Leitfähigkeit	90	μS/cm = 1552
Temperatur	57	°C = 1001 °F = 1002
Konzentration	73	% = 1342
Salinität	75	g/kg = 1523
TDS	76	mg/l = 1558
Zellfaktor	79	1/cm = 1524
Nullpunkt	62	μS = 1290
Durchfluss	64	l/h = 1353

AI-Block CC (Dual-Leitfähigkeit)		
Messgröße	Channel	Unit
Leitfähigkeit A	70	μS/cm = 1552
Leitfähigkeit B	77	μS/cm = 1552
Temperatur A	57	°C = 1001 °F = 1002
Temperatur B	80	°C = 1001 °F = 1002
Zellfaktor A	79	1/cm = 1524
Zellfaktor B	62	1/cm = 1524
Durchfluss	64	l/h = 1353
Verrechnung	78	ohne = 0
Spezifischer Widerstand A	72	MΩ * cm = 1555
Spezifischer Widerstand B	92	MΩ * cm = 1555
Verbrauch lonentauscher	63	% = 1342

Analogausgang (AO-Block)

Der Funktionsblock AO leitet den vom PROFIBUS vorgegebenen Wert an das Gerät weiter. Zum Beispiel kann man einen Temperatur- oder Druckwert vorgeben, der dann vom Gerät verwendet wird.

Channel	Modultyp	Text	Info	XD_SCALE
83	PH, COND, CONDI, OXY	Temperatur		°C, °F
85	OXY	Druck		mbar, hPa, psi

Digitaleingang (DI-Block)

Der Funktionsblock DI dient der USP-Erkennung

(nur bei Cond, "gut/schlecht"-Bewertung der Wasserqualität).

Channel	Text
89	USP

Parameter OUT_D

Bit	Wert	Bedeutung
0	1	USP-Grenzwert überschritten
1	1	reduzierter USP-Grenzwert überschritten

Digitalausgänge (DO-Block, nur A451N)

Die beiden Digitalausgänge dienen der freien Steuerung der beiden Relais.

Channel	Text
87	Relais 1
88	Relais 2

Parameter SP_D

Bit	Wert	Bedeutung
0	0	Relais offen
0	1	Relais geschlossen

Übersicht Software

Übersicht Software Stratos Pro A221N / A221X

GSD	GSD-Datei von CD-ROM oder Internetseite
GSD A221N / A221X	herstellerspezifisch: KNIC7535.GSD
	profilspezifisch: PA139700.GSD
Geräteprofil	PROFIBUS PA Profil 3.02
Adressbereich	0 126 (default = 126)
	0 125 über PROFIBUS service set_slave_add
	0 126 über lokales Display
	0 126 über RESET = 2712
Funktionsblöcke	1 x TB = Transducer Block
	1 x PB = Physical Block
	8 x AI = Analog Input Blocks
	1 x AO = Analog Output Block
	1 x DI = Digital Input Block

Übersicht Software Stratos Evo A451N

GSD	GSD-Datei von CD-ROM oder Internetseite
GSD A451N	herstellerspezifisch: KNIC7536.GSD
	profilspezifisch: PA039700.GSD
Geräteprofil	PROFIBUS PA Profil 3.02
Adressbereich	0 126 (default = 126)
	0 125 über PROFIBUS service set_slave_add
	0 126 über lokales Display
	0 126 über RESET = 2712
Funktionsblöcke	1 x TB = Transducer Block
	1 x PB = Physical Block
	8 x AI = Analog Input Blocks
	1 x AO = Analog Output Block
	2 x DO = Digital Output Block
	1 x DI = Digital Input Block

Diagnose

Im PROFIBUS DP werden umfangreiche Diagnosemöglichkeiten unterstützt. Die aktuelle Diagnose kann von einem DP-Master jederzeit beim DP-Slave abgefragt werden. Diagnosetelegramme können neben der Standarddiagnose weitere gerätespezifische Diagnosen in der GSD beschreiben. Der DP-Slave kann jederzeit im Datentelegramm melden, dass eine aktuelle Diagnose ansteht. Dazu markiert er sein Datentelegramm im zyklischen Datenaustausch als hohe Priorität.

Das PROFIBUS-Profil wurde ab Version 3.02 um die Parameter **condensed status** und **diagnosis** erweitert. Die Diagnose ist bitweise kodiert und daher ist es möglich, mehrere Ereignisse gleichzeitig zu übertragen. Die GSD-Datei beinhaltet Text für jedes Diagnose-Bit, um eine Textmeldung in der Warte bereitzustellen.

Zyklische Datenübertragung

Float-Format

Byte	Byte n									Byte n+1						
Bit 7	Bit 6							Bit 7	Bit 6							
VZ	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2-3	2-4	2-5	2-6	2-7	
	Exponent										Mantisse					

Byte n+2									Byte n+3							
Bit 7									Bit 7							
2-8	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	2 ⁻¹⁶	2 ⁻¹⁷	2-18	2 ⁻¹⁹	2-20	2 ⁻²¹	2-22	2-23	
Mantisse								Mantisse								

Beispiel:

Der Parameter COND_STATUS_DIAG kann nicht geändert werden, wenn die zyklische Datenübertragung aktiv ist.

MEAS MODE (Messwertmodus)

Der Parameter MEAS MODE legt fest, welche Messgrößen zur Verfügung stehen. Die anderen Kanäle liefern auch Werte, die jedoch über keinen gültigen Messwertstatus verfügen und daher nur der Information dienen. Je nach Einstellung stehen folgende Messgrößen jeweils gleichzeitig zur Verfügung:

рН								
MEAS MODE	Messgrößen							
рН	pH, ORP, Temperatur							
mV	mV, Temperatur							
ORP	ORP, Temperatur							

Cond, Condl									
MEAS MODE Messgrößen									
Cond									
USP	Leitfanigkeit, lemperatur								
Conc%	Conc%, Leitfähigkeit, Temperatur								
SAL	SAL, Leitfähigkeit, Temperatur								
TDS	TDS, Leitfähigkeit, Temperatur								

Оху									
MEAS MODE	Messgrößen								
DO%	Sättigung, Partialdruck, Temperatur								
DO ppm									
DO mg/l	Konzentration, Partialoruck, Temperatur								
GAS%	Gaskonzentration, Partialdruck, Temperatur								

CC (Dual-Leitfähigkeit)									
MEAS MODE	Messgrößen								
Leitfähigkeit	Leitfähigkeit 1, Leitfähigkeit 2, Temperatur 1, Temperatur 2, Verrechnung								
Spezifischer Widerstand	Spezifischer Widerstand 1, Spezifischer Widerstand 2								

Condensed Status

Um eine bessere Übersicht zu erhalten, ist der Zustand des PROFIBUS-Gerätes in einem Sammelstatus zusammengefasst. Der Sammelstatus ergibt sich aus der Verdichtung aller Statusmeldungen.

Quali	ity	Quali	ity suk	ostatu	s	Limit	s	
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
0	0							= bad
0	1							= uncertain
1	0							= good (Non Cascade)
1	1							= good (Cascade) - not supported

Status = bad

Qual	ity	Qual	ity suk	ostatu	s	Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2º	
0	0	0	0	0	0	0	0	= non-specific
0	0	1	0	0	0	1	1	= passivated
0	0	1	0	0	1	x	x	 maintenance alarm, more diagnosis available
0	0	1	0	1	0	х	x	= process related, no maintenance
0	0	1	1	1	1	x	x	= function check / local override; value not usable

Status = uncertain

Qual	ity	Qual	ity suk	ostatu	s	Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
0	1	0	0	1	0	х	x	= substitute set
0	1	0	0	1	1	1	1	= initial value
0	1	1	0	1	0	x	x	= maintenance demanded
0	1	1	1	0	0	1	1	= simulated value, start
0	1	1	1	0	1	1	1	= simulated value, end
0	1	1	1	1	0	x	x	= process related, no maintenance

Status = good (Non Cascade)

Quali	ity	Quali	ity sub	ostatu	s	Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
1	0	0	0	0	0	х	x	= ok
1	0	0	0	0	1	х	x	= update event
1	0	0	0	1	0	х	x	= advisory alarm
1	0	0	0	1	1	х	x	= critical alarm
1	0	1	0	0	0	x	x	 initiate fail safe (not provided by signal converter)
1	0	1	0	0	1	х	x	= maintenance required
1	0	1	0	1	0	х	x	= maintenance demanded
1	0	1	1	1	1	х	x	= function check

Status = Limits

Qual	ity	Quali	ity suk	ostatu	s	Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
						0	0	= ok
						0	1	= low limited
						1	0	= high limited
						1	1	= constant

Bad:
Uncertain:
Good (Cascade):
Good (Non-Cascade):

Der Messwert ist nicht nutzbar. Der Messwert ist noch nutzbar. Der Messwert ist nutzbar. Der Messwert ist nutzbar. 202

Classic Status

Quality		Quali	ity suk	ostatu	S	Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
0	0							= bad
0	1							= uncertain
1	0							= good (Non Cascade)
1	1							= good (Cascade) - not supported

Status = bad

Quality		Quality substatus				Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
0	0	0	0	0	0			= non-specific
0	0	0	0	0	1			= configuration error
0	0	0	0	1	0			= not connected
0	0	0	0	1	1			= device failure
0	0	0	1	0	0			= sensor failure
0	0	0	1	0	1			= no communication (last usable value)
0	0	0	1	1	0			= no communication (no usable value)
0	0	0	1	1	1			= out of service

Status = uncertain

Quali	ity	Quality substatus				Limit	:S	
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
0	1	0	0	0	0			= non-specific
0	1	0	0	0	1			= last usable value
0	1	0	0	1	0			= substitute-set
0	1	0	0	1	1			= initial value
0	1	0	1	0	0			= sensor conversion not accurate
0	1	0	1	0	1			= engineering unit violation (unit not in the valid set)
0	1	0	1	1	0			= sub-normal
0	1	0	1	1	1			= configuration error
0	1	1	0	0	0			= simulated value

Status = good (Non Cascade)

Quality		Quality substatus				Limit	S	
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
1	0	0	0	0	0			= ok
1	0	0	0	0	1			= update event
1	0	0	0	1	0			= active advisory alarm
1	0	0	0	1	1			= active critical alarm
1	0	0	1	0	0			= unacknowledged update event
1	0	0	1	0	1			= unacknowledged advisory alarm
1	0	0	1	1	0			= unacknowledged critical alarm
1	0	1	0	0	0			= initial fail safe
1	0	1	0	0	1			= maintenance required

Status = Limits

Quality		Quali	ity suk	ostatu	s	Limits		
Gr	Gr	QS	QS	QS	QS	Qu	Qu	
27	2 ⁶	2⁵	24	2 ³	2 ²	2 ¹	2º	
						0	0	= ok
						0	1	= low limited
						1	0	= high limited
						1	1	= constant

Bad:	Der Messwert ist nicht nutzbar.
Uncertain:	Der Messwert ist noch nutzbar.
Good (Cascade):	Der Messwert ist nutzbar.
Good (Non-Cascade):	Der Messwert ist nutzbar.

Übersichtstabelle DIAGNOSIS_EXTENSION

BIT	ERR	Condition Name	
0		reserviert	
1	ERR 23	Autoklavierzähler überschritten	
2	ERR 24	CIP-Zyklen überschritten	
3	ERR 25	SIP-Zyklen überschritten	
4	ERR 102	Parametrierfehler User Buffer -U1-	
5		reserviert	
6		reserviert	
7		reserviert	
8	ERR 22	Sensorverschleiß (Memosens)	
9	ERR 18	Wartungszähler überschritten	
10	ERR 17	Kalibriertimer abgelaufen	
11	ERR 21	Sensor Einstellzeit überschritten (Drift)	
12		Kalibrierdaten schlecht	
13	ERR 15, 16	Sensocheck (Glasimpedanz, Bezugsimpedanz)	
14		reserviert	
15		reserviert	
16	ERR 14	Temperatur außerhalb Tabellenbereich	
17	ERR 13	Temperaturbereich unter-/überschritten	
18	ERR 10,11,12	Messbereich unter-/überschritten	
19		reserviert	
20		Kalibrierung ist aktiv	
21		Konfigurierung ist aktiv	
22		Service ist aktiv	
23		reserviert	
24	ERR 05	Kalibrierdaten fehlerhaft	
25	ERR 03	Sensor entwertet	
26	ERR 02, 96	falsches Modul/Sensor	

7	Λ	F
Z	U	J

Messwertstatus Condensed (PA)
0xA8 Good-Maintenance demand
 0xA8 Good-Maintenance demand
 0xA8 Good-Maintenance demand
0xA8 Good-Maintenance demand
0xA8 Good-Maintenance demand
 0xA8 Good-Maintenance demand
 0xA8 Good-Maintenance demand
0x78 Uncertain-invalid process condition
 0x78 Uncertain-invalid process condition
 0x78 Uncertain-invalid process condition
 0xBC Good Function Check
0xBC Good Function Check
0xBC Good Function Check
 0x24 BAD-Maintenance alarm
0x24 BAD-Maintenance alarm
0x24 BAD-Maintenance alarm

Übersichtstabelle DIAGNOSIS_EXTENSION

BIT	ERR	Condition Name	
27	ERR 01, 96	kein Sensor/Modul	
28	ERR 04	Sensor defekt	
29	ERR 98	Konfigurierdaten defekt	
30	ERR 99	Abgleichdaten defekt	
31	ERR 95	Ausfall interne Kommunikation / Systemfehler	

*) abhängig von Parametrierung

Hinweis: Ungültige Werte werden auf 0 gesetzt und haben einen schlechten Status.

Messwertstatus Condensed (PA)
0x24 BAD-Maintenance alarm

Inbetriebnahme am PROFIBUS

Nur wenn das Stratos fachkundig konfiguriert wird, kann die PROFIBUS-Kommunikation korrekt funktionieren. Es gibt verschiedene Konfigurationstools, die von unterschiedlichen Herstellern angeboten werden (z. B. SIMATIC PDM von Siemens). Mit ihnen können Sie das Gerät und den PROFIBUS konfigurieren.

Hinweis: Bei der Installation und bei Konfigurierungsvorgängen über das Leitsystem (PLS) sind die Bedienvorschriften und die menügeführten Hinweise des Leitsystems bzw. des Konfigurationstools zu beachten.

Gerätestammdatei (GSD-Datei)

Die GSD-Datei enthält die Beschreibung der Geräteparameter und ermöglicht die Einbindung des Messgerätes in das PROFIBUS-System. Die mitgelieferte CD-ROM enthält die Gerätestammdatei KNIC7535.gsd /KNICK7536.gsd und den Ordner DD (Device Description) mit weiteren Dateien. Diese zusätzliche Dateien (z. B. *.bmp oder *.dib) beinhalten Symbole (Icons), die das PROFIBUS-Gerät im Konfigurationssystem abbilden. Dafür müssen die Dateien vorab in das Konfigurationsprogramm geladen werden.

Diese Dateien können wie folgt bezogen werden:

- über die mitgelieferte CD
- im Internet über www.knick.de oder www.profibus.com

Erstinbetriebnahme

- 1) Gerät mit Hilfsenergie versorgen.
- 2) Gerät an PROFIBUS anschließen.
- 3) PROFIBUS-Adresse festlegen (siehe Seite 209).
- 4) Ggf. Default-Initialisierung durchführen (siehe Seite 209).
- 5) Identnummer auswählen (siehe Seite 209).
- 6) GSD-Datei in das dafür vorgesehene Verzeichnis des Konfigurationsprogramms laden.
- 7) Konfigurationsprogramm öffnen.

PROFIBUS-Adresse festlegen

Um die PROFIBUS-Adresse festzulegen, gehen Sie wie folgt vor:

- 1) Taste menu drücken.
- 2) Mit Pfeiltasten 4 > CONF wählen, mit enter bestätigen.
- 3) ADDRESS wählen, mit enter bestätigen.

Default-Initialisierung

Um eine Default-Initialisierung durchzuführen, gehen Sie wie folgt vor:

- 1) Taste menu drücken.
- 2) Mit Pfeiltasten • SERVICE wählen, mit **enter** bestätigen.
- 3) Passcode eingeben (Default: 5555), mit enter bestätigen.
- 4) Mit Pfeiltasten 4 > DEVICE TYPE wählen, mit enter bestätigen.
- 5) Mit Pfeiltasten ◀ ▶ gewünschte Messgröße wählen.

Die Default-Initialisierung wird entsprechend der nachfolgenden Tabellen durchgeführt.

Umschalten der gültigen Identnummer

Für die Kommunikation mit einem Master der Klasse 1 benötigt ein PROFIBUS DP-Gerät eine Identnummer, mit der die eindeutige Beziehung zwischen Gerät und GSD-Datei beschrieben wird. Mit dem Parameter IDENT_NUMBER_SELECTOR ist es möglich, die beim Beginn der zyklischen Datenübertragung gültige Identnummer auszuwählen:

- a) Automation Adaption Mode (Werkseinstellungen)
- b) Profile Specific Ident. Number (Profil) (Profilspezifische Identnummer)
- c) Manufacturer Specific Ident. Number (Herstellerspezifische Identnummer)

Sie können die Identnummer mit einem geeigneten Projektierungstool (z. B. SIMATIC PDM) auswählen. Die Verwaltung der Identnummern erfolgt durch die PROFI-BUS-Nutzerorganisation.

a) Automation Adaption Mode

Auswahl entsprechend der verwendeten GSD-Datei.

b) Profilspezifische Identnummer (9700 HEX)

Diese Einstellung führt zu einer eingeschränkten Funktionalität, die im PA Profil 3.02 festgelegt ist.

рН				
Slot	Beschreibung	Blocktyp		
1	Messwert 1	AI		
2	Messwert 2	AI		
3	Messwert 3	AI		
4	Messwert 4	AI		

Gültige GSD-Module:

AI-FB	EMPTY_MODULE
	AI

Die GSD-Datei PA039700.GSD ist erforderlich.

Kombinationen Stratos Pro A221N / A221X

Auswahl Identnr.	ldentnr.	GSD-Datei	Status
Automatic Adaption	7535 HEX	KNIC7535.GSD	Classic/Condensed
Mode	9700 HEX	PA139700.GSD	Classic
Herstellerspez. Identnr.	7535 HEX	KNIC7535.GSD	Classic/Condensed
Profilspez. Identnr.	9700 HEX	PA139700.GSD	Classic

Kombinationen Stratos Evo A451N

Auswahl Identnr.	ldentnr.	GSD-Datei	Status
Automatic Adaption	7536 HEX	KNIC7536.GSD	Classic/Condensed
Mode	9700 HEX	PA039700.GSD	Classic
Herstellerspez. Identnr.	7536 HEX	KNIC7536.GSD	Classic/Condensed
Profilspez. Identnr.	9700 HEX	PA039700.GSD	Classic

c) Herstellerspezifische Identnummer (A221 N / A221X: 7535 HEX | A451N: 7536 HEX)

Diese Einstellung liefert die vollständige Funktionalität des PROFIBUS-Gerätes. Alle Funktionsblöcke sind für den zyklischen Datenverkehr verfügbar.

	рН					
Slot	Beschreibung	Block	Defaultwert			
1	pH-Wert	Al1	рН			
2	Temperatur	AI2	°C			
3	pH-Spannung	AI3	mV			
4	ORP-Wert	Al4	mV			
5	Glasimpedanz	AI5	Ω			
6	Verschleiß	Al6	%			
7	Kalibriertimer	AI7	h			
8	Durchfluss	AI8	l/h			
9	Temperatur	AO	°C			

Оху					
Slot	Beschreibung	Block	Defaultwert		
1	Sauerstoffsättigung	Al1	%		
2	Temperatur	AI2	°C		
3	Konzentration	AI3	ppm		
4	Volumenkonzentration	Al4	Vol%		
5	Partialdruck	AI5	mbar		
6	Verschleiß	Al6	%		
7	Kalibriertimer	AI7	h		
8	Durchfluss	AI8	l/h		
9	Druck	AO	mbar		

Gültige GSD-Module:

AI-FB

EMPTY_MODULE

Al: Out

Die GSD-Datei KNIC7535.GSD / KNIC7536.GSD ist erforderlich.

Cond					
Slot	Beschreibung	Block	Defaultwert		
1	Leitfähigkeit	Al1	μS/cm		
2	Temperatur	AI2	°C		
3	Konzentration	AI3	%		
4	Salinität	Al4	g/kg		
5	TDS	AI5	mg/l		
6	Spezifischer Widerstand	Al6	MΩ*cm		
7	Zellkonstante	AI7	1/cm		
8	Durchfluss	AI8	l/h		
9	Temperatur	AO	°C		

Condi				
Slot	Beschreibung	Block	Defaultwert	
1	Leitfähigkeit	Al1	μS/cm	
2	Temperatur	Al2	°C	
3	Konzentration	AI3	%	
4	Salinität	Al4	g/kg	
5	TDS	AI5	mg/l	
6	Nullpunkt	Al6	1/cm	
7	Zellkonstante	AI7	1/cm	
8	Durchfluss	AI8	l/h	
9	Temperatur	AO	°C	

	Cond-Cond					
Slot	Beschreibung	Block	Defaultwert			
1	Leitfähigkeit 1	AI1	μS/cm			
2	Temperatur 1	AI2	°C			
3	Leitfähigkeit 2	AI3	μS/cm			
4	Temperatur 2	AI4	°C			
5	Verrechneter Wert	AI5				
6	Zellkonstante 1	AI6	1/cm			
7	Zellkonstante 2	AI7	1/cm			
8	Durchfluss	AI8	l/h			

Konfigurationsdaten

Die Tabelle "Zyklische Datenkommunikation" zeigt die Maximalkonfiguration des zyklischen Datentelegramms. Das Telegramm kann den jeweiligen Systemanforderungen angepasst werden, wenn nicht alle Daten benötigt werden. Zur Projektierung gehen Sie wie folgt vor:

- 1) Laden Sie die GSD-Datei in die Software des Automatisierungssystems.
- 2) Selektieren Sie in der Konfigurationssoftware des Automatisierungssystems diejenigen Daten, die im zyklischen Telegramm benötigt werden.

Die Konfigurationssoftware des Automatisierungssystems stellt aus Ihrer Projektierung die Konfigurationsdaten zusammen, die von der Prozesssteuerung an das Feldgerät übergeben werden. Die Konfigurationsdaten (CHK_CFG) legen den Inhalt des zyklischen Datentelegramms fest.

Die Konfigurationsdaten setzen sich aus zwölf Abschnitten zusammen, wobei jedem Abschnitt ein Function Block zugeordnet ist. Der Inhalt bestimmt, ob ein Function Block am zyklischen Datenverkehr teilnimmt oder nicht. Die Reihenfolge der Daten im zyklischen Input/Output-Datentelegramm entspricht der Position des zugehörigen Function Blocks in den Konfigurationsdaten.

Slot-Nr.	Block	Verwendung
0	Physical Block (PB)	allgemeine Daten
1	AI 1	Messwert 1
2	AI 2	Messwert 2
3	AI 3	Messwert 3
4	AI 4	Messwert 4
5	AI 5	Messwert 5
6	AI 6	Messwert 6
7	AI 7	Messwert 7
8	AI 8	Messwert 8
9	AO	Analogausgang
10	DI	Rückmeldung Unical Status
11	DO 1	Steuerung Relais 1
12	DO 2	Steuerung Relais 2
13	Transducer Block (TB)	

Slot-Modell

Zyklische Datenkommunikation

Slot	Block	Konfigurationsdaten	Beschreibung	Input	Output
		0x00	Free Place	-	-
1	AI 1	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 1	5 Byte	-
		0x00	Free Place	-	-
2	AI 2	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 2	5 Byte	-
		0x00	Free Place	-	-
3	AI 3	0x42, 0x84, 0x08, 0x05 oder 0x94		5 Byte	-
		0x00	Free Place	-	-
4	AI 4	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 4	5 Byte	-
		0x00	Free Place	-	-
5	AI 5	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 5	5 Byte	-
		0x00	Free Place	-	-
6	AI 6	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 6	5 Byte	-
		0x00	Free Place	-	-
7	AI 7	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 7	5 Byte	-
		0x00	Free Place	-	-
8	AI 8	0x42, 0x84, 0x08, 0x05 oder 0x94	Process Value 8	5 Byte	-
		0x00	Free Place	-	-
9	AO	0xA4 oder 0x82,0x84,0x08,0x05	Compensation Value	2 Byte	-
10		0x00	Free Place	-	-
		0x91	USP Status	2 Byte	-
11		0x00	Free Place	-	-
		0xA1	Relais 1	2 Byte	-
12	002	0x00	Free Place	-	-
12		0xA1	Relais 2	2 Byte	-

Physical Block Parameters

Index rel	Index abs	Parameter	Data Type	Size	Store	
0	16	BLOCK_OBJECT	DS-32	12	Record	
1	17	ST_REV	UNSIGNED16	2	Simple	
2	18	TAG_DESC	OCTET_STRING	32	Simple	
3	19	STRATEGY	UNSIGNED16	2	Simple	
4	20	ALERT_KEY	UNSIGNED8	1	Simple	
5	21	TARGET_MODE	UNSIGNED8	1	Simple	
6	22	MODE_BLK	DS_37	3	Record	
7	23	ALARM_SUM	DS_42	4	Record	
8	24	SOFTWARE_REVISION	VISIBLE_STRING	16	Simple	
9	25	HARDWARE_REVISION	VISIBLE_STRING	16	Simple	
10	26	DEVICE_MAN_ID	UNSIGNED16	1	Simple	
11	27	DEVICE_ID	VISIBLE_STRING	16	Simple	
12	28	DEVICE_SER_NUM	VISIBLE_STRING	16	Simple	
13	29	DIAGNOSIS	OCTET_STRING	4	Simple	
14	30	DIAGNOSIS_EXT	OCTET_STRING	6	Simple	
15	31	DIAGNOSIS_MASK	OCTET_STRING	4	Simple	
16	32	DIAGNOSIS_MASK_EXT	OCTET_STRING	6	Simple	
17	33	DEVICE_CERTIFICATION	VISIBLE_STRING	32	Simple	
18	34	WRITE_LOCKING	UNSIGNED16	2	Simple	
19	35	FACTORY_RESET	UNSIGNED16	2	Simple	
20	36	DESCRIPTOR	OCTET_STRING	32	Record	
21	37	DEVICE_MESSAGE	OCTET_STRING	32	Simple	
22	38	DEVICE_INSTAL_DATE	OCTET_STRING	16	Simple	
24	40	IDENT_NUMBER_SELECT	UNSIGNED8	1	Simple	
25	41	HW_WRITE_PROTECTION	UNSIGNED8	1	Simple	
26	42	FEATURE	DS_68	2	Record	
27	43	COND_STATUS_DIAG	UNSIGNED8	1	Simple	
28	44	DIAG_EVENT_SWITCH	DS_69	3	Record	
Default Value	Access	Writable Range	Slot			
---------------	--------	----------------	------			
	R		0			
0	SR		0			
u	SRW		0			
0	SRW		0			
0	SRW		0			
8	SRW		0			
8; 0x88; 8	DR		0			
0; 0; 0; 0	DR		0			
	R		0			
	R		0			
	R		0			
	R		0			
	R		0			
0	DR		0			
0	DR		0			
	R		0			
	R		0			
	R		0			
	NRW		0			
0	SRW		0			
u	SRW		0			
u u	SRW		0			
u u	SRW		0			
	SRW		0			
0	DR		0			
	R		0			
1	SRW		0			
0, 0	SRW		0			

AI Function Block Parameters

Index rel	Index abs	Parameter	Data Type	Size	Store	
0	16	BLOCK_OBJECT	DS-32	12	Record	
1	17	ST_REV	UNSIGNED16	2	Simple	
2	18	TAG_DESC	OCTET_STRING	32	Simple	
3	19	STRATEGY	UNSIGNED16	2	Simple	
4	20	ALERT_KEY	UNSIGNED8	1	Simple	
5	21	TARGET_MODE	UNSIGNED8	1	Simple	
6	22	MODE_BLK	DS_37	3	Record	
7	23	ALARM_SUM	DS_42	4	Record	
8	24	BATCH	DS_67	4	Record	
10	26	OUT	DS_101	2	Record	
11	27	PV_SCALE	FLOATING_POINT	2	Array	
12	28	OUT_SCALE	DS_36	4	Record	
13	29	LIN_TYPE	UNSIGNED8	1	Simple	
14	30	CHANNEL	UNSIGNED16	2	Simple	
16	32	PV_FTIME	FLOATING_POINT	1	Simple	
17	33	FSAFE_TYPE	UNSIGNED8	1	Simple	
18	34	FSAFE_VALUE	FLOATING_POINT	1	Simple	
19	35	ALARM_HYS	FLOATING_POINT	1	Simple	
21	37	HI_HI_LIM	FLOATING_POINT	1	Simple	
23	39	HI_LIM	FLOATING_POINT	1	Simple	
25	41	LO_LIM	FLOATING_POINT	1	Simple	
27	43	LO_LO_LIM	FLOATING_POINT	1	Simple	
30	46	HI_HI_ALM	DS_39	5	Record	
31	47	HI_ALM	DS_39	5	Record	
32	48	LO_ALM	DS_39	5	Record	
33	49	LO_LO_ALM	DS_39	5	Record	
34	50	SIMULATE	DS_50	3	Record	
35	51	OUT_UNIT_TEXT	OCTET_STRING	16	Simple	

Default Value	Access	Writable Range	Slot
	R		1-8
0	SR		1-8
Ш	SRW		1-8
0	SRW		1-8
0	SRW		1-8
8	SRW	Auto	1-8
128; 152; 8	DR	OS, OS/MAN/AUTO, AUTO	1-8
0; 0; 0; 0	DR		1-8
0; 0; 0; 0	SRW		1-8
0.0; 0x4F	NRWO	UNCERTAIN, INITIAL_VALUE; writable	1-8
100.0; 0.0	SRW	0% to 100%	1-8
100.0; 0.0; 1342; 0	SRW	0% to 100%	1-8
0	SRW		1-8
0	SRW		1-8
0.0	SRW		1-8
1	SRW		1-8
0.0	SRW		1-8
0.5	SRW	0.5% out of range	1-8
	SRW		1-8
0; 0; 0,0; 0; 0.0	DR		1-8
0; 0; 0,0; 0; 0.0	DR		1-8
0; 0; 0,0; 0; 0.0	DR		1-8
0; 0; 0,0; 0; 0.0	DR		1-8
0; 0.0;	SRW	disabled	1-8
и	SRW		1-8

AO Function Block Parameters

Index rel	Index abs	Parameter	Data Type	Size	Store	
0	16	BLOCK_OBJECT	DS-32	12	Record	
1	17	ST_REV	UNSIGNED16	2	Simple	
2	18	TAG_DESC	OCTET_STRING	32	Simple	
3	19	STRATEGY	UNSIGNED16	2	Simple	
4	20	ALERT_KEY	UNSIGNED8	1	Simple	
5	21	TARGET_MODE	UNSIGNED8	1	Simple	
6	22	MODE_BLK	DS_37	3	Record	
7	23	ALARM_SUM	DS_42	4	Record	
8	24	BATCH	DS_67	4	Record	
9	25	SP	DS_101	2	Record	
11	27	PV_SCALE	DS_36	4	Record	
12	28	READBACK	DS_101	2	Record	
14	30	RCAS_IN	DS_101	2	Record	
21	37	IN_CHANNEL	UNSIGNED16	2	Simple	
22	38	OUT_CHANNEL	UNSIGNED16	2	Simple	
23	39	FSAVE_TIME	FLOATING_POINT	1	Simple	
24	40	FSAVE_TYPE	UNSIGNED8	1	Simple	
25	41	FSAVE_VALUE	FLOATING_POINT	1	Simple	
27	43	RCAS_OUT	DS_101	2	Record	
31	47	POS_D	DS_102	2	Record	
32	48	SETP_DEVIATION	FLOATING_POINT	1	Simple	
33	49	CHECK_BACK	OCTET_STRING	3	Simple	
34	50	CHECK_BACK_MASK	OCTET_STRING	3	Simple	
35	51	SIMULATE	DS_50	3	Record	
36	52	INCREASE_CLOSE	UNSIGNED8	1	Simple	
37	53	OUT	DS_101	2	Record	
38	54	OUT_SCALE	DS_36	4	Record	

Access	Writable Range	Slot
R		9
SR		9
SRW	Auto	9
DR	OS, OS/MAN/AUTO/RCAS, AUTO	9
DR		9
SRW		9
DRWI	bad, no comm. no value	9
SRW		9
DRO	bad, non-specific	9
DRWI	bad, no comm. no value	9
SRW		9
DRO	bad, non-specific	9
DRO	bad, non-specific	9
DR		9
DRO		9
R		9
SRW	disabled	9
SRW		9
DRO	bad, non-specific	9
SRW		9
	AccessRSRSRWSRWSRWSRWDRDRDRSRWDRODRDROSRW	AccessWritable RangeRSRSRWSRWSRWSRWAutoDROS, OS/MAN/AUTO/RCAS, AUTODRSRWDRSRWDRSRWDRSRWDRbad, no comm. no valueSRWDRObad, non-specificDRWIbad, no comm. no valueSRWSRWSRWSRWDRObad, non-specificDRObad, non-specificDRObad, non-specificDRObad, non-specificDRObad, non-specificDRObad, non-specificDRObad, non-specificSRWdisabledSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSRWSabledSRWSabledSRWSRWSRWSabledSRWSabledSRWSabled, non-specificSRWSRWSRWSabledSRWSabledSRWSabledSRWSabledSRWSabledSRWSabledSRWSabledSRWSabled <t< td=""></t<>

DI Function Block Parameters

Index rel	Index abs	Parameter	Data Type	Size	Store	
0	16	BLOCK_OBJECT	DS-32	12	Record	
1	17	ST_REV	UNSIGNED16	2	Simple	
2	18	TAG_DESC	OCTET_STRING	32	Simple	
3	19	STRATEGY	UNSIGNED16	2	Simple	
4	20	ALERT_KEY	UNSIGNED8	1	Simple	
5	21	TARGET_MODE	UNSIGNED8	1	Simple	
6	22	MODE_BLK	DS_37	3	Record	
7	23	ALARM_SUM	DS_42	4	Record	
8	24	BATCH	DS_67	4	Record	
10	26	OUT_D	DS_102	2	Record	
14	30	CHANNEL	UNSIGNED16	2	Simple	
15	31	INVERT	UNSIGNED8	1	Simple	
20	36	FSAFE_TYPE	UNSIGNED8	1	Simple	
21	37	FSAVE_VALUE_D	UNSIGNED8	1	Simple	
24	40	SIMULATE	DS_51	3	Record	

Default Value	Access	Writable Range	Slot
	R		10
0	SR		10
и	SRW		10
0	SRW		10
0	SRW		10
8	SRW	Auto	10
0x80; 0x98; 0x08	DR	OS, OS/MAN/AUTO, AUTO	10
0; 0; 0; 0	DR		10
0; 0; 0; 0	SRW		10
0; 0x00	NRWO	bad, non-specific	10
0	SRW		10
0	SRW		10
1	SRW		10
0	SRW		10
 0; 0; 0	SRW	disabled	10

DO Function Block Parameters

Index rel	Index abs	Parameter	Data Type	Size	Store	
0	16	BLOCK_OBJECT	DS-32	12	Record	
1	17	ST_REV	UNSIGNED16	2	Simple	
2	18	TAG_DESC	OCTET_STRING	32	Simple	
3	19	STRATEGY	UNSIGNED16	2	Simple	
4	20	ALERT_KEY	UNSIGNED8	1	Simple	
5	21	TARGET_MODE	UNSIGNED8	1	Simple	
6	22	MODE_BLK	DS_37	3	Record	
7	23	ALARM_SUM	DS_42	4	Record	
8	24	BATCH	DS_67	4	Record	
9	25	SP_D	DS_102	2	Record	
10	26	OUT_D	DS_102	2	Record	
12	28	READBACK_D	DS_102	2	Record	
14	30	RCAS_IN_D	DS_102	2	Record	
17	33	CHANNEL	UNSIGNED16	2	Simple	
18	34	INVERT	UNSIGNED8	1	Simple	
19	35	FSAFE_TIME	FLOATING_POINT	1	Simple	
20	36	FSAFE_TYPE	UNSIGNED8	1	Simple	
21	37	FSAFE_VALUE_D	UNSIGNED8	1	Simple	
22	38	RCAS_OUT_D	DS_102	2	Record	
24	40	SIMULATE	DS_51	3	Record	
33	49	CHECK_BACK_D	OCTET_STRING	3	Simple	
34	50	CHECK_BACK_MASK	OCTET_STRING	3	Simple	

Default Value	Access	Writable Range	Slot
	R		11-12
0	SR		11-12
и	SRW		11-12
0	SRW		11-12
0	SRW		11-12
0x08	SRW	Auto	11-12
0x80; 0x9A; 0x08	DR	OS, OS/MAN/AUTO/RCAS/LO, AUTO	11-12
0; 0; 0; 0	DR		11-12
0; 0; 0; 0	SRW		11-12
0; 0x18	DRWI	bad, no communication (no usable value)	11-12
0; 0x00	DRWO	bad, non-specific	11-12
0; 0x00	DRO	bad, non-specific	11-12
0; 0x18	DRWI	bad, no communication (no usable value)	11-12
0	SRW		11-12
0	SRW		11-12
0.0	SRW		11-12
2	SRW		11-12
0	SRW		11-12
0; 0x00	DRO	bad, non-specific	11-12
0; 0; 0	SRW	disabled	11-12
0, 0, 0	DRO		11-12
0x0D, 0x4C, 0x00	R		11-12

Busparameter Standard Transducer Block (TB)

Index	Index	Parameter	Description	
rel	abs			
0	16	BLOCK_OBJECT	Block-Typ	
1	17	ST_REV	ldentifikationszähler, der bei jeder Änderung von Konfigurationsparametern inkrementiert wird	
2	18	TAG-DESC	Eindeutige TAG im System, die der Anwender spezifizieren kann	
3	19	STRATEGY	Kann verwendet werden, um eine Gruppierung von Blöcken zu identifizieren	
4	20	ALERT_KEY	Wert kann vom Anwender für die Alarmbehandlung geschrieben werden	
5	21	TARGET_MODE	Zielmodus = Auto	
6	22	MODE_BLK	Eingestellter Blockmodus	
7	23	ALARM_SUM	Alarmstatus	
8	24	VALUE_AO	Wert Analogausgang	
9	25	VALUE_DI	Wert Digitaleingang	
10	26	VALUE_DO	Wert Digitalausgang	

Default Value	R/W	Bytes	Data Type	Range
The revision value is incremented every time a static parameter in the block is changed.	R	2		
Text		32		
0		2		
0		1		
Available Modes: Automatic, Out Of Service (OOS), Manual		1 1 1 1		
		2		
0 0 0 0 0	R	1 1 8 2 2		
	R/W	5	FLOAT_S	
	R/W	2	DISC_2	
	R/W	2	DISC_2	

рΗ

Index	Index	Parameter	Description	
rel	abs			
11	27	Meas Type	Messmodus wählen	
12	28	рН	pH-Parameter	
		Sensortype	pH-Sensortyp wählen	
		Meas Mode	Messmodus wählen	
		RTD Type	Temperatursensortyp wählen	
		Temperature Unit	Temperatureinheit der Anzeige wählen	
		Temperature Meas	Temperaturerfassung bei Messung wählen	
		Temperature Meas Manual Value	Temperatur manuell eingeben (MAN)	
		Temperature Calibration	Temperaturerfassung bei Kalibrierung wählen	
		Temperature Cal Manual Value	Temperatur manuell eingeben (MAN)	
		Nominal Zero	Nominellen Nullpunkt für Pfaudler-Sensoren eingeben	
		Nominal Slope	Nominelle Steilheit für Pfaudler-Sensoren eingeben	
		pH Iso	pHiso-Wert für Pfaudler-Sensoren eingeben	
		Calibration Mode	Kalibriermodus wählen	
		Buffer Set	Pufferset wählen (AUTO)	
		Calibration Timer	Kalibriertimer wählen	
		Calibration Cycle	Kalibrierzyklus einstellen	
		ACT	Adaptiven Kalibriertimer wählen (nur ISM)	
		ACT Cycle	Adaptiven Kalibrierzyklus wählen (MAN)	
		ТТМ	Adaptiven Wartungstimer wählen (nur ISM)	
		TTM Cycle	Adaptiven Wartungszyklus wählen (MAN)	
		CIP Count	Reinigungszyklen ein-/ausschalten	
		CIP Cycles	Reinigungszyklen eingeben (ON)	
		SIP Count	Sterilisierungszyklen ein-/ausschalten	
		SIP Cycles	Sterilisierungszyklen eingeben (ON)	
		Autoclave	Autoklavierzähler ein-/ausschalten	
		AC Cycles	Autoklavierzyklus eingeben (ON)	
		Tc Select	Temperaturkompensation wählen	
		Tc Liquid	Wert für die lineare Temperaturkompensation einge- ben (LIN)	

рΗ

Default Value	R/W	Bytes	Data	Range
			Туре	
0 = pH	R/W	1	U8	0-5
	R/W		Record	
0 = Standard	R/W	1	U8	0-20
0 = pH	R/W	1	U8	0-2
0 = 100 PT	R/W	1	U8	0-8
0 = °C	R/W	1	U8	0-1
0 = Auto	R/W	1	U8	0-2
0	R/W	4	Float	
0 = Auto	R/W	1	U8	0-2
0	R/W	4	Float	
7.0	R/W	4	Float	0-14
59.2	R/W	4	Float	30-60
7.0	R/W	4	Float	0-14
0 = Auto	R/W	1	U8	0-2
0 = -02- Knick	R/W	1	U8	0-255
0 = Off	R/W	1	U8	0-2
168	R/W	4	Float	0-9999
0 = Off	R/W	1	U8	0.2
30	R/W	4	Float	0-2000
0 = Off	R/W	1	U8	0-2
365	R/W	4	Float	0-2000
0 = Off	R/W	1	U8	0-1
0	R/W	2	U16	0-9999
0 = Off	R/W	1	U8	0-1
0	R/W	2	U16	0-9999
0 = Off	R/W	1	U8	0-1
 0	R/W	2	U16	0-9999
0 = Off	R/W	1	U8	0-3
0	R/W	4	Float	-19.99-19.99

230

Cond

Index	Index	Parameter	Description	
rel	abs			
13	29	Conductivity	Parameter Leitfähigkeit	
		Sensor Type	Cond-Sensortyp wählen	
		Meas Mode	Messmodus wählen	
		Display Unit	Messbereich wählen	
		Solution	Konzentrationsbestimmung	
		RTD Type	Temperatursensortyp wählen	
		Temperature Unit	Temperatureinheit der Anzeige wählen	
		Temperature	Temperaturerfassung bei Messung wählen	
		Temperature Manual Value	Temperatur manuell eingeben (MAN)	
		CIP Count	Reinigungszyklen ein-/ausschalten	
		SIP Count	Sterilisierungszyklen ein-/ausschalten	
		Tc Select	Temperaturkompensation wählen	
		Tc Liquid	Wert für die lineare Temperaturkompensation eingeben (LIN)	
		Reference Temperature	Wert für die Referenztemperatur eingeben (LIN)	
		Tds Factor	TDS-Faktor eingeben (Meas Mode = TDS)	
		Usp Factor	USP-Faktor eingeben (Meas Mode = USP)	

231
Cond

Default Value	R/W	Bytes	Data Type	Range
	R/W		Record	
0 = 2-Electrode	R/W	1	U8	0-20
0 = Cond	R/W	1	U8	0-2
0 = 000.0 mS/cm	R/W	1	U8	0-8
0 = -01- (NaCl)	R/W	1	U8	0-1
0 = 100 PT	R/W	1	U8	0-2
0 = °C	R/W	1	U8	
0 = Auto	R/W	1	U8	0-2
0	R/W	4	Float	
0 = Off	R/W	1	U8	0-1
0 = Off	R/W	1	U8	0-1
0 = Off	R/W	1	U8	0-1
0	R/W	4	Float	0-2
0	R/W	4	Float	0-255
0	R/W	4	Float	0-2
0	R/W	4	Float	0-9999

Condl

232

Index	Index	Parameter	Description	
rel	abs			
14	30	Toroidal Conductivity	Parameter induktive Leitfähigkeit	
		Sensor Type	Cond-Sensortyp wählen	
		Meas Mode	Messmodus wählen	
		Display Unit	Messbereich wählen	
		Solution	Konzentrationsbestimmung	
		RTD Type	Temperatursensortyp wählen	
		Temperature Unit	Temperatureinheit der Anzeige wählen	
		Temperature	Temperaturerfassung bei Messung wählen	
		Temperature Manual Value	Temperatur manuell eingeben (MAN)	
		CIP Count	Reinigungszyklen ein-/ausschalten	
		SIP Count	Sterilisierungszyklen ein-/ausschalten	
		Tc Select	Temperaturkompensation wählen	
		Tc Liquid	Wert für die lineare Temperaturkompensation eingeben (LIN)	
		Reference Temperature	Wert für die Referenztemperatur eingeben (LIN)	
		Tds Factor	TDS Faktor eingeben (Meas Mode = TDS)	

Condl

233

Default Value		Bytes	Data Type	Range
	R/W		Record	
0 = SE 655	R/W	1	U8	0-4
0 = Cond	R/W	1	U8	0-2
0 = 0.000 mS/cm	R/W	1	U8	0-5
0 = -01- (NaCl)	R/W	1	U8	0-9
0 = 100 PT	R/W	1	U8	0-5
0°C	R/W	1	U8	0-1
0 = Auto	R/W	1	U8	0-2
0	R/W	4	Float	25.0
0 = Off	R/W	1	U8	0-1
0 = Off	R/W	1	U8	0-1
0 = Off	R/W	1	U8	0-5
0	R/W	4	Float	0-19.99
0	R/W	4	Float	
0	R/W	4	Float	

Оху

234

Index	Index	Parameter	Description	
rel	abs			
15	31	Dissolved Oxygen	Parameter Oxy	
		Sensor Type	Sensortyp wählen	
		Meas Mode	Messmodus wählen	
		Polarization Voltage Meas	Polarisationsspannung Messung eingeben	
		Polarization Voltage Cal	Polarisationsspannung Kalibrierung eingeben	
		Membrane Compensation	Membrankompensation eingeben	
		RTD Type	Temperaturfühlertyp wählen	
		Temperature Unit	Temperatureinheit der Anzeige wählen	
		Calibration Mode	Kalibriermodus wählen	
		Calibration Timer	Kalibriertimer ein-/ausschalten	
		Cal Cycle	Kalibrierzyklus einstellen (ON)	
		ACT	Adaptiven Kalibriertimer wählen (nur ISM)	
		ACT Cycle	Adaptiven Kalibrierzyklus wählen (MAN)	
		ТТМ	Adaptiven Wartungstimer wählen (nur ISM)	
		TTM Cycle	Adaptiven Wartungszyklus wählen (MAN)	
		CIP Count	Reinigunszyklen ein-/ausschalten	
		CIP Cycles	Reinigungszyklen eingeben (ON)	
		SIP Count	Sterilisierungszyklen ein-/ausschalten	
		SIP Cycles	Sterilisierungszyklen eingeben (ON)	
		Autoclave	Autoklavierzähler ein-/ausschalten	
		AC Cycles	Autoklavierzyklus eingeben (ON)	
		Salinity	Salzkorrektur eingeben	
		Pressure Unit	Druckeinheit wählen	
		Pressure	Druckkorrektur wählen	
		Pressure Manual Value	Druck eingeben (MAN)	

Оху

Default Value	R/W	Bytes	Data	Range
			Туре	
	R/W		Record	
0 = Standard	R/W	1	U8	0-4
0 = DO%	R/W	1	U8	0-2
0	R/W	4	Float	
0	R/W	4	Float	
0	R/W	4	Float	
4 = 22 NTC	R/W	1	U8	4-5
0 = °C	R/W	1	U8	0-1
0 = Cal air	R/W	1	U8	0-1
0 = Off	R/W	1	U8	0-2
168	R/W	4	Float	0-9999
0 = Off	R/W	1	U8	0-2
30	R/W	4	Float	0-9999
0 = Off	R/W	1	U8	0-2
365	R/W	4	Float	0-2000
0 = Off	R/W	1	U8	0-1
0	R/W	2	U16	0-9999
0 = Off	R/W	1	U8	0-1
0	R/W	2	U16	0-9999
0 = Off	R/W	1	U8	0-1
0	R/W	2	U16	0-9999
0	R/W	4	Float	
 0 = BAR	R/W	1	U8	0-2
0 = MAN	R/W	1	U8	0-1
0	R/W	4	Float	

236

СС

Index	Index	Parameter	Description	
rel	abs			
16	32	СС	Parameter Cond-Cond	
		Tc Select A	Temperaturkompensation wählen	
		Tc Liquid A	Wert für die lineare Temperaturkompensation eingeben (LIN)	
		Reference Temperature A	Wert für die Referenztemperatur eingeben (LIN)	
		Tc Select B	Temperaturkompensation wählen	
		Tc Liquid B	Wert für die lineare Temperaturkompensation eingeben (LIN)	
		Reference Temperature B	Wert für die Referenztemperatur eingeben (LIN)	
		Meas Range	Messbereich wählen	
		Temp Unit	Temperatureinheit der Anzeige wählen	
		Calculation	Berechnung ein-/ausschalten	
		Calculation Type	Berechnungstyp wählen (ON)	
		Factor 1	Faktor 1 eingeben (-C7-)	
		Factor 2	Faktor 2 eingeben (-C7-)	
		Parameter A	Faktor 1 eingeben (-C8-)	
		Parameter A	Faktor 2 eingeben (-C8-)	
		Parameter B	Faktor 3 eingeben (-C8-)	
24	33	Flow Adjust	Durchflussmessung eingeben (Impulse/Liter)	
25	34	Alarm Delay	Alarmverzögerung in Sekunden eingeben	
26	35	Sensocheck	Sensocheck ein-/ausschalten	

CC

Default Value	R/W	Bytes	Data	Range
			Туре	
	R/W		Record	
0 = Off	R/W	1	U8	0-6
0	R/W	4	Float	0-19.99
0	R/W	4	Float	
0 = Off	R/W	1	U8	0-6
0	R/W	4	Float	0-19.99
0	R/W	4	Float	
1 = 00.00 μS/cm	R/W	1	U8	22-25, 55
0°C	R/W	1	U8	0-1
0 = Off	R/W	1	U8	0-1
0 = -C1- Difference	R/W	1	U8	0-7
3	R/W	4	Float	
243	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
12000	R/W	4	Float	0-20000
10	R/W	4	Float	0-600
 1 = On	R/W	1	U8	0-1

Index	Index	Parameter	Description	
rel	abs			
20	36	Clock	Parameter Uhr	
		Format	Uhrzeitformat wählen	
		Minute	Minuten eingeben	
		Hour	Stunden eingeben	
		am or pm	Zwischen AM und PM wählen	
		Day	Tag eingeben	
		Month	Monat eingeben	
		Year	Jahr eingeben	

Default Value	R/W	Bytes	Data	Range
			Туре	
	R/W		Record	
0 = 24 h	R/W	1	U8	0-1
0	R/W	1	U8	0-59
0	R/W	1	U8	0-24
0 = am	R/W	1	U8	0-1
1	R/W	1	U8	1-31
1	R/W	1	U8	1-12
2000	R/W	2	U16	2000-2099

рΗ

Busparameter herstellerspezifischer Transducer Block (TB)

Index	Index	Parameter	Description	
rel	abs			
21	37	pH Tc Liquid Table	Tabelle für Temperaturkompensation (TC_SELECT = user tab) Werte von 0 °C bis 100 °C in 5-°C-Schritten.	
		0 °C	Wert für 0 °C eingeben	
		5 °C	Wert für 5 °C eingeben	
		10 °C	Wert für 10 °C eingeben	
		15 °C	Wert für 15 °C eingeben	
		20 °C	Wert für 20 °C eingeben	
		25 °C	Wert für 25 °C eingeben	
		30 °C	Wert für 30 °C eingeben	
		35 ℃	Wert für 35 °C eingeben	
		40 °C	Wert für 40 °C eingeben	
		45 °C	Wert für 45 °C eingeben	
		50 °C	Wert für 50 °C eingeben	
		55 ℃	Wert für 55 °C eingeben	
		60 °C	Wert für 60 °C eingeben	
		65 ℃	Wert für 65 °C eingeben	
		70 °C	Wert für 70 °C eingeben	
		75 ℃	Wert für 75 °C eingeben	
		80 ℃	Wert für 80 °C eingeben	
		85 ℃	Wert für 85 °C eingeben	
		90 °C	Wert für 90 °C eingeben	
		95 ℃	Wert für 95 °C eingeben	

Hinweis: Verwenden Sie zur komfortablen Eingabe ein Parametriertool wie z. B. **SIMATIC PDM** von Siemens.

рΗ

Default Value	R/W	Bytes	Data	Range
			Туре	
	R/W		Record	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	

рΗ

Index	Index	Parameter	Description	
rel	abs			
22	38	pH User Buffer 1	Tabelle für 1. Pufferlösung (BUFFER = User buffer)	
		Nominal Value	Nennwert (25 °C) für 1. Puffer pH eingeben	
		0 °C	Wert für 1. Puffer pH eingeben	
		5 °C	Wert für 1. Puffer pH eingeben	
		10 °C	Wert für 1. Puffer pH eingeben	
		15 °C	Wert für 1. Puffer pH eingeben	
		20 °C	Wert für 1. Puffer pH eingeben	
		25 ℃	Wert für 1. Puffer pH eingeben	
		30 °C	Wert für 1. Puffer pH eingeben	
		35 °C	Wert für 1. Puffer pH eingeben	
		40 °C	Wert für 1. Puffer pH eingeben	
		45 °C	Wert für 1. Puffer pH eingeben	
		50 °C	Wert für 1. Puffer pH eingeben	
		55 ℃	Wert für 1. Puffer pH eingeben	
		60 °C	Wert für 1. Puffer pH eingeben	
		65 °C	Wert für 1. Puffer pH eingeben	
		70 °C	Wert für 1. Puffer pH eingeben	
		75 ℃	Wert für 1. Puffer pH eingeben	
		80 °C	Wert für 1. Puffer pH eingeben	
		85 ℃	Wert für 1. Puffer pH eingeben	
		90 °C	Wert für 1. Puffer pH eingeben	
		95 ℃	Wert für 1. Puffer pH eingeben	

рΗ

Default Value	R/W	Bytes	Data	Range
			Туре	
	R/W		Record	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
 1	R/W	4	Float	
 1	R/W	4	Float	
 1	R/W	4	Float	

рΗ

Index	Index	Parameter	Description	
rel	abs			
23	39	pH User Buffer 2	Tabelle für 2. Pufferlösung (BUFFER = User buffer)	
		Nominal Value	Nennwert (25 °C) für 2. Puffer pH eingeben	
		0°C	Wert für 2. Puffer pH eingeben	
		5 °C	Wert für 2. Puffer pH eingeben	
		10 °C	Wert für 2. Puffer pH eingeben	
		15 °C	Wert für 2. Puffer pH eingeben	
		20 °C	Wert für 2. Puffer pH eingeben	
		25 °C	Wert für 2. Puffer pH eingeben	
		30 °C	Wert für 2. Puffer pH eingeben	
		35 ℃	Wert für 2. Puffer pH eingeben	
		40 °C	Wert für 2. Puffer pH eingeben	
		45 °C	Wert für 2. Puffer pH eingeben	
		50 °C	Wert für 2. Puffer pH eingeben	
		55 °C	Wert für 2. Puffer pH eingeben	
		60 °C	Wert für 2. Puffer pH eingeben	
		65 °C	Wert für 2. Puffer pH eingeben	
		70 °C	Wert für 2. Puffer pH eingeben	
		75 °C	Wert für 2. Puffer pH eingeben	
		80 °C	Wert für 2. Puffer pH eingeben	
		85 °C	Wert für 2. Puffer pH eingeben	
		90 °C	Wert für 2. Puffer pH eingeben	
		95 °C	Wert für 2. Puffer pH eingeben	
24	40	Sample Product	Schritt 1 der Produktkalibrierung starten	
25	41	Stored Value	Anzeige des gespeicherten Wertes der Produktkalibrierung – Schritt 1	
26	42	Reference Value	Schritt 2 der Produktkalibrierung: Wert der Probe eingeben	
27	43	Calibration Product Step	Fortschritt der Kalibrierung	
28	44	Calibration Result	Ergebnis der letzten Kalibrierung	
29	45	Logbook Entry	Vorgabe des Gruppenindex, der gelesen werden soll	
30	46	Logbook Binary Data	Logbuch Rohdaten	
31	47	Logbook Erase	Logbucheinträge werden gelöscht	

Default Value	R/W	Bytes	Data	Range
			Туре	
			Record	
1	R	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
0 = No operation	R/W	1	U8	
0	R	4	Float	
0	R/W	4	Float	
0	R	1	U8	
0 = Good	R/W	1	U8	
0	R/W	1	U8	
	R	78	U8	
 0 = No Operation	R/W	1	U8	

Index	Index	Parameter	Description	
rel	abs			
32	48	Sensor	Sensordaten	
		Sensor Serial No.	Seriennummer digitaler Sensor	
		Sensor Order No.	Bestellnummer digitaler Sensor	
		Тад	Messstellenbezeichnung (TAG) digitaler Sensor	
		Status	Statusanzeige	
		Runtime	Betriebsdauer des digitalen Sensors	
		SIP Cycles	SIP-Zyklen	
		CIP Cycles	CIP-Zyklen	
		TTM	Adaptiver Wartungstimer	
		DLI	Digital Lifetime Indicator	
		ACT	Adaptiver Kalibriertimer	
		Autoclave	Autoklavieren	
		Wear	Sensorverschleiß für Memosens pH- oder Oxy- Sensoren	
		Smiley	Status Sensoface	
		Calibration Timer	Kalibriertimer	
33	49	Sensor Request Binary	Abfrage der Sensorinformation	
34	50	Sensor Response Binary	Antwortdaten der Sensorinformation	
35	51	Slope	pH-Steilheit mit Lese-/Schreibzugriff	
36	52	Zero	pH-Nullpunkt mit Lese-/Schreibzugriff	
37	53	Isfet Offset	ISFET-Offset mit Lese-/Schreibzugriff (nur ISM)	
38	54	ORP Zero	ORP-Nullpunkt mit Lese-/Schreibzugriff	
39	55	Slope	Sauerstoff-Steilheit mit Lese-/Schreibzugriff	
40	56	Zero	Sauerstoff-Nullpunkt mit Lese-/Schreibzugriff	
41	57	rH	Relative Feuchtigkeit während Kalibrierung [%]	
42	58	Cellconstant	Zellfaktor eingeben	
43	59	Cellfactor	Zellfaktor eingeben	
44	60	Install	Einbaufaktor eingeben	
45	61	Zero	Nullpunkt eingeben	
46	62	Trans Ratio	Übertragungsfaktor eingeben	
47	63	Cellfactor A	Zellfaktor Sensor A eingeben (nur CC)	
48	64	Cellfactor B	Zellfaktor Sensor B eingeben (nur CC)	
49	65	Calibration Time	Letzte Kalibrierung (Datum)	
50	66	Hold	Verhalten für Messwertstatus während der Kalibrierung, Konfigurierung und Service wählen	

Default Value	R/W	Bytes	Data	Range
			Туре	
			Record	
0	R	16	Oct	
0	R	18	Oct	
0	R	32	Oct	
0	R	2	U16	
0	R	4	Float	
0	R	2	U16	
0	R	2	U16	
0	R	4	Float	
0	R	4	Float	
0	R	4	Float	
0	R	4	Float	
0	R	4	Float	
0	R	2	U16	
0	R	4	Float	
	R/W	20	Oct	
	R	32	Oct	
59.2	R/W	4	Float	
7.0	R/W	4	Float	
0	R/W	4	Float	
0	R/W	4	Float	
60.0	R/W	4	Float	
0	R/W	4	Float	
100	R/W	4	Float	
0.75	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
0	R/W	4	Float	
0	R/W	4	Float	
1	R/W	4	Float	
1	R/W	4	Float	
	R/W	19	Oct	
0 = Off	R/W	1	U8	

Index	Index	Parameter	Description	
rel	abs			
51	67	Version	Version	
		Device Serial No	Seriennummer Gerät	
		Device Software Version	Softwareversion	
		Device Hardware Version	Hardwareversion	
		Meas Module Serial No.	Seriennummer digitaler Sensor	
		Meas Module Software Version	Seriennummer Software digitaler Sensor	
		Meas Module Hardware Version	Seriennummer Hardware digitaler Sensor	

Default Value	R/W	Bytes	Data	Range
			Туре	
	R		Record	
0	R	4	U32	
0	R	8	Oct	
0	R	2	Oct	
0	R	16	Oct	
0	R	8	Oct	
0	R	2	Oct	

Index	Index	Parameter	Description	
rel	abs			
52	68	Value pH [pH]	pH Wert	
		Value pH [pH]	pH Wert	
		Status	pH Status	
53	69	Value mV [mV]	mV Wert	
		Value mV [mV]	mV Wert	
		Status	mV Status	
54	70	Value ORP [mV]	ORP Wert	
		Value ORP [mV]	ORP Wert	
		Status	ORP Status	
55	71	Value Glass Impedance [MOhm]	Glasimpedanz Wert	
		Value Glass Impedance [MOhm]	Glasimpedanz Wert	
		Status	Glasimpedanz Status	
56	72	Value Reference Impedance [kOhm]	Referenzimpedanz Wert	
		Value Reference Impedance [kOhm]	Referenzimpedanz Wert	
		Status	Referenzimpedanz Status	
57	73	Value Temperature	Temperatur Wert	
		Value Temperature	Temperatur Wert	
		Status	Temperatur Status	
58	74	Temperature Unit	Temperatureinheit wählen	
59	75	Value Calibration Timer [h]	Kalibriertimer Wert (nicht für ISM)	
		Value Calibration Timer [h]	Kalibriertimer Wert (nicht für ISM)	
		Status	Kalibriertimer Status	
60	76	Value Slope	Steilheit Wert	
		Value Slope	Steilheit Wert	
		Status	Steilheit Status	
61	77	Slope Unit	Einheit für Steilheit wählen	
62	78	Value Zero	Nullpunkt Wert	
		Value Zero	Nullpunkt Wert	
		Status	Nullpunkt Status	

Default Value	R/W	Bytes	Data	Range
			Туре	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
1001 = °C	R	2	U16	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
1342 = %	R	2	U16	
	R		DS_101	
 0.0	R	4	Float	
0	R	1	U8	

Index	Index	Parameter	Description	
rel	abs			
63	79	Value Wear [%]	Sensorverschleiß Wert (Memosens pH-/Oxy-Sensoren)	
		Value Wear [%]	Sensorverschleiß Wert (Memosens pH-/Oxy-Sensoren)	
		Status	Sensorverschleiß Status (Memosens pH-/Oxy-Sensoren)	
64	80	Value Flow [l/h]	Fluss Wert	
		Value Flow [l/h]	Fluss Wert	
		Status	Fluss Status	
65	81	Value DO Saturation Air [%]	Luftsättigung Wert	
		Value DO Saturation Air [%]	Luftsättigung Wert	
		Status	Luftsättigung Status	
66	82	Value DO Concentration	Konzentration Wert	
		Value DO Concentration	Konzentration Wert	
		Status	Konzentration Status	
67	83	DO Concentration Unit	Einheit für Konzentration wählen	
68	84	Value Gas Volume Concentration [Vol %]	Gaskonzentration Wert	
		Value Gas Volume Concentration [Vol %]	Gaskonzentration Wert	
		Status	Gaskonzentration Status	
69	85	Value Partial Pressure [mbar]	Partialdruck Wert	
		Value Partial Pressure [mbar]	Partialdruck Wert	
		Status	Partialdruck Status	
70	86	Value Conductivity	Leitfähigkeit Wert	
		Value Conductivity	Leitfähigkeit Wert	
		Status	Leitfähigkeit Status	
71	87	Conductivity Unit	Einheit für Leitfähigkeit wählen	
72	88	Value Specific Resistance [MOhm*cm]	Spezifischer Widerstand Wert	
		Value Specific Resistance [MOhm*cm]	Spezifischer Widerstand Wert	
		Status	Spezifischer Widerstand Status	
PROFIBUS

Image: section of the section of th	Default Value	R/W	Bytes	Data	Range
RJS_1010.0RAFloat0.0R1U80R1U80.0R4Float0.0R4Float0.0R1U80R1U80R1U80R1U80.0R4Float0.0R4Float0.0R1U80.0R4Float0.0R4Float1423 ppmR1U81423 ppmR5_1010.0R4Float0R4Float0R1U80R1U80R1U80R4Float0R4Float1UR10R4Float1UR10R4Float1UR10R4Float1UR1U81UR1U81UR1U81UR1U81UR1U81UR1U81UR1U81UR1U8 <t< th=""><th></th><th></th><th></th><th>Туре</th><th></th></t<>				Туре	
0.0R4Float0R1U80R1U80.0R4Float0R1U80R1U80R1U80R1U80.0R4Float0.0R4Float0.0R1U80.0R1U80.0R1U810.0R1U80.0R1U81423 = ppmR2U161423 = ppmR2U160.0R4Float0.0R4Float0.0R1U80R1U80R1U80R1U80R1U81U3U1U10R4Float0R4Float0R1U80R1U80R1U80R1U81U3U10R1U30R1U30R1U30R2U160R2U160R2U160R2U16 <trr>0<td></td><td>R</td><td></td><td>DS_101</td><td></td></trr>		R		DS_101	
0R1U80RJS_1010.0R4Float0R1U80R1U80R4Float0.0R4Float0.0R4Float0.0R4Float0.0R10U80.0R10U81423 = ppmR2U161423 = ppmR2U160.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8I1U8	0.0	R	4	Float	
RDS_1010.0R4Float0R1U80R1U80.0R4Float0.0R4Float0R1U80R1U80R1U810.0R4Float0R1U8Integer0.0R4FloatInteger0.0R4FloatInteger0.0R1U8Integer1423 = ppmR2U16Integer0.0R4FloatInteger0.0R4FloatInteger0.0R4FloatInteger0.0R4FloatInteger0.0R4FloatInteger0.0R4FloatInteger0.0R4FloatInteger1552 = µS/cmR1U8Integer0.0R4FloatInteger0.0R1U8Integer0.0R1U8Integer0.0R1U8Integer0.0R1U8Integer0.0R1U8Integer0.0R1U8Integer0.0R1U8Integer0.0R1U8	0	R	1	U8	
No.0R4Float0R1U81NRD0.0R4Float0R1U80R1U80R1U810.0R1Ds_1010.0R4Float10.0R4Float1423 = ppmR2U161423 = ppmR1U80.0R4Float10.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U810.0R1U1610.0R1U1610.0R1U1610.0R1U1610.0R1U1610.0R1U1610.0R1U1610.0R4Float <t< td=""><td></td><td>R</td><td></td><td>DS_101</td><td></td></t<>		R		DS_101	
0R1U80R5_1010.0R4Float0R1U80R1U30.0R4Float0.0R4Float1423 = ppmR2U160.0R1U81423 = ppmR2U160.0R4Float0.0R4Float0.0R4Float0.0R10U80.0R4Float0.0R1U80R1U80R1U80R1U80R1U80R1U8152 = µS/cmR2U160.0R4Float0.0R4Float0.0R1U80.0R1U80.0R1U81552 = µS/cmR2U160.0R4Float0.0R4Float0.0R4Float1552 = µS/cmR2U160.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float	0.0	R	4	Float	
RDS_1010.0R44Float0R1U80R1DS_1010.0R44Float1423 = ppmR2U161423 = ppmR05_1010.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R11U80.0R14Float0.0R1U80.0R4Float0.0R1U80.0R1U80.0R1U810.0R4Float0.0R4Float10.0R1U810.0R1U811552 = µS/cmR2U160.0R4Float0.0R4Float0.0R4Float10.0R1U810.0R1U610.0R4Float10.0R1U610.0R1U610.0R1U610.0R1U610.0R1U610.0R1U610.0R	0	R	1	U8	
0.0 R4Float0R1U8 0 RDS_1010.0R4Float0R1U81423 = ppmR2U160R4Float0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R1U80R1U80R1U80R1U80R1U80R1U80R1U810.0R41552 = μ S/cmR2U160.0R4Float0.0R4Float0.0R1U81552 = μ S/cmR2U160.0R4Float0.0R4Float1552 = μ S/cmR2U160.0R4Float0.0R4Float0.0R4Float1552 = μ S/cmR2U160.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R<		R		DS_101	
0R1U80R D_{5} 101 D_{5} 1010.0R4Float0R1U81423 = ppmR2U160R4Float0.0R4Float0.0R4Float0R10U80R10D5_1010.0R4Float0.0R4Float0.0R10U80.0R10U80.0R10U80.0R10U810.0R10152 = μ S/cmR2U160.0R1U80.0R4Float0.0R1U80.0R1U61552 = μ S/cmR2U160.0R4Float0.0R4Float1552 = μ S/cmR2U160.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float	0.0	R	4	Float	
RDS_1010.0R4Float0R1U81423 = ppmR2U161423 = ppmRDS_1010.0R4Float0.0R4Float0.0R1U80R1U80R1U80R1U80.0R4Float0.0R4Float0.0R1U80R1U80R1U80R1U81552 = μ S/cmR2U160.0R1U80.0R1U80.0R1U80.0R1U80.0R1U80.0R1U80.0R1U80.0R1U80.0R1U80.0R1U80.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float0.0R4Float	0	R	1	U8	
0.0 R 4 Float 0 R 1 U8 $1423 = ppm$ R 2 U16 0 R M DS_101 0.0 R 4 Float 0.0 R 4 Float 0.0 R 1 U8 $1552 = \mu$ S/cm R 2 U16 0.0 R 4 Float 0.0 R 4 Float 0.0 R 4 Float 0.0 R 4 Float		R		DS_101	
0R1U81423 = ppmR2U16 $1423 = ppm$ R 2 U16 0 R 4 DS_101 0.0 R 4 Float 0 R1U8 0 R 1 $0S_101$ 0.0 R 4 Float 0.0 R 4 Float 0.0 R 1 $0S_101$ 0.0 R 1 $0S_101$ 0.0 R 4 Float 0.0 R 4 Float $1552 = \mu S/cm$ R 2 016 R 2 016 0.0 R 4 Float	0.0	R	4	Float	
1423 = ppm R 2 U16 1423 = ppm R DS_101 0 R 4 Float 0.0 R 4 Float 0 R 1 U8 0 R 1 U8 0.0 R 4 Float 0.0 R 1 U8 1 105_101 Intervertee Intervertee 0.0 R 4 Float 1 0.0 R 1 U8 1 1552 = μS/cm R 1 U6 1 0.0 R 2 U16 0.0 R 4 Float Intervertee 0.0 R 4 Kot Kot 0.0 R 4 Kot Kot 0.0 R 4 <td>0</td> <td>R</td> <td>1</td> <td>U8</td> <td></td>	0	R	1	U8	
Image: sector secto	1423 = ppm	R	2	U16	
0.0 R 4 Float 0 R 1 08 1 0.0 R 0.5_101 0.0 R 4 Float 0.0 R 4 Float 0.0 R 1 08 0.0 R 1 08 0.0 R 1 0.5_101 0.0 R 4 Float 0.0 R 4 0.5_101 $1552 = \mu$ S/cm R 1 0.8 0.0 R 2 016 0.0 R 4 Float		R		DS_101	
0R1U8Image: Relation of the system of	0.0	R	4	Float	
R DS_101 0.0 R 4 Float 0 R 1 U8 1 V R DS_101 0 R 1 U8 0 R 4 Float 0.0 R 4 Float 0.0 R 1 U8 1 0.0 R 1 U8 1 0.0 R 10 V8 1 1552 = μ S/cm R 2 U16 0.0 R 4 Float 0.0 R 4 Float 0.0 R 10 U8 0.0 R 4 Float 0.0 R 4 Float 0.0 R 4 Float	0	R	1	U8	
0.0 R 4 Float 0 R 1 $U8$ M N DS_101 0.0 R 4 Float 0.0 R 4 Float 0.0 R 4 Float $1552 = \mu$ S/cm R 2 $U16$ 0.0 R 4 Float 0.0 R 4 Float 0.0 R 4 M 0 M		R		DS_101	
0 R 1 U8 Image: Relation of the system of the	0.0	R	4	Float	
R DS_101 0.0 R 4 Float 0 R 1 U8 1552 = μS/cm R 2 U16 0.0 R 4 Float 0 R 4 DS_101 1552 = μS/cm R 2 U16 0.0 R 4 Float 0.0 R 4 Float 0.0 R 4 Float	0	R	1	U8	
0.0 R 4 Float 0 R 1 U8 1552 = μS/cm R 2 U16 0 R DS_101 0.0 R 4 Float 0.0 R 4 State		R		DS_101	
0 R 1 U8 1552 = μS/cm R 2 U16 R DS_101 0.0 R 4 Float 0 R 1 U8	0.0	R	4	Float	
1552 = μS/cm R 2 U16 R R DS_101 0.0 R 4 Float 0 R 1 U8	0	R	1	U8	
R DS_101 0.0 R 4 Float 0 R 1 U8	1552 = μS/cm	R	2	U16	
0.0 R 4 Float 0 R 1 U8		R		DS_101	
0 R 1 U8	 0.0	R	4	Float	
	 0	R	1	U8	

Busparameter herstellerspezifischer Transducer Block (TB)

Index	Index	Parameter	Description	
rel	abs			
73	89	Value Concentration [%]	Konzentration Wert	
		Value Concentration [%]	Konzentration Wert	
		Status	Konzentration Status	
74	90	Value Conductance	Leitwert Wert	
		Value Conductance	Leitwert Wert	
		Status	Leitwert Status	
75	91	Value Salinity [g/kg]	Salzgehalt Wert	
		Value Salinity [g/kg]	Salzgehalt Wert	
		Status	Salzgehalt Status	
76	92	Value Tds [mg/l]	TDS Wert	
		Value Tds [mg/l]	TDS Wert	
		Status	TDS Status	
77	93	Value Conductivity 2 [µS/cm]	CC: Leitfähigkeit 2. Wert	
		Value Conductivity 2 [µS/cm]	CC: Leitfähigkeit 2. Wert	
		Status	CC: Status Leitfähigkeit 2. Wert	
78	94	Value Calculation	CC: berechneter Wert entsprechend Berechnungstyp	
		Value Calculation	CC: berechneter Wert entsprechend Berechnungstyp	
		Status	CC: Status berechneter Wert entsprechend Berechnungstyp	
79	95	Value Cell [1/cm]	Zellfaktor Wert	
		Value Cell [1/cm]	Zellfaktor Wert	
		Status	Zellfaktor Status	
80	96	Value Temperature 2	CC: Temperatur 2. Wert	
		Value Temperature 2	CC: Temperatur 2. Wert	
		Status	CC: Status Temperatur 2. Wert	
81	97	Temperature 2 Unit	CC: Temperatureinheit wählen	
82	98	Unit	Verwendete Einheit während Produktkalibrierung	

PROFIBUS

R 0.0 R 0 R B B	२ २ २ २	4	Type DS_101 Float	
R 0.0 R 0 R R R R R	२ २ २ २	4	DS_101 Float	
0.0 R 0 R	۲ ۲ ۲	4	Float	
0 R	۲ ۲	1		
R	2	I	U8	
			DS_101	
0.0 R	2	4	Float	
0 R	2	1	U8	
R	2		DS_101	
0.0 R	2	4	Float	
0 R	2	1	U8	
R	2		DS_101	
0.0 R	2	4	Float	
0 R	2	1	U8	
R	2		DS_101	
0.0 R	2	4	Float	
0 R	{	1	U8	
R	8		DS_101	
0.0 R	}	4	Float	
0 R	8	1	U8	
R	2		DS_101	
0.0 R	2	4	Float	
0 R	2	1	U8	
R	2		DS_101	
0.0 R	2	4	Float	
0 R	2	1	U8	
1001 = °C R	2	2	U16	
0 R	1	2	U16	

Busparameter herstellerspezifischer Transducer Block (TB)

Index	Index	Parameter	Description	
rel	abs			
83	99	AO Final Value Temperature	Analogausgang letzter Temperaturwert	
		AO Final Value Temperature	Analogausgang letzter Temperaturwert	
		Status	Status Analogausgang letzter Temperaturwert	
84	100	AO Feedback Value (not used)	Analogausgang Istwert	
		AO Feedback Value (not used)	Analogausgang Istwert	
		Status	Status Analogausgang Istwert	
85	101	AO Final Value Pressure	Analogausgang Endwert Druck	
		AO Final Value Pressure	Analogausgang Endwert Druck	
		Status	Status Analogausgang Endwert Druck	
86	102	AO Feedback Value (not used)	Analogausgang Istwert	
		Value	Analogausgang Istwert	
		Status	Status Analogausgang Istwert	
87	103	DO Final Value 1	Digitalausgang Endwert 1	
		Value	Digitalausgang Endwert 1	
		Status	Status	
88	104	DO Final Value 2	Digitalausgang Endwert 2	
		Value	Digitalausgang Endwert 2	
		Status	Status	
89	105	DI Value USP	Digitaleingang USP-Wert	
		Value	USP-Wert	
		Status	Status Digitaleingang USP-Wert	
90	106	Primary Value	Hauptwert	
		Value	Hauptwert	
		Status	Status Hauptwert	
91	107	Current Error	Aktueller Gerätefehler	
92	108	Specific Resi.2 [MOhm*cm]	CC: Spezifischer Widerstand 2	
		Status	Status Spezifischer Widerstand 2	
		Value	Wert Spezifischer Widerstand 2	
93	109	Sensor Fix	Sensordaten	
		Sensor Serial No.	Seriennummer digitaler Sensor	
		Sensor Order No.	Bestellnummer digitaler Sensor	
		Тад	Messstellenbezeichnung digitaler Sensor	
		Manufacturer	Hersteller digitaler Sensor	
		Initial Operation	Inbetriebnahmedatum	

PROFIBUS

Default Value	R/W	Bytes	Data	Range
			Туре	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
	R		DS_102	
0	R	1	U8	
0	R	1	U8	
	R		DS_102	
0	R	1	U8	
0	R	1	U8	
	R		DS_102	
0	R	1	U8	
0	R	1	U8	
	R		DS_101	
0.0	R	4	Float	
0	R	1	U8	
0	R	1	U8	
	R		DS_101	
0	R	1	Float	
0.0	R	4	U8	
	R		Record	
	R	16	Oct	
	R	18	Oct	
	R	32	Oct	
	R	16	Oct	
	R	19	Oct	

Produktkalibrierung

Die Produktkalibrierung kann für pH, ORP, Cond, Condl, Oxy und Cond-Cond mithilfe von drei Parametern über den PROFIBUS durchgeführt werden.

Beispiel Produktkalibrierung pH über PROFIBUS

- 1) Parameter SAMPLE_PRODUCT auf Sample stellen. Das Gerät speichert den pH-Wert der Probe. Nach dem Schreiben wird der Parameter automatisch auf NOP zurückgesetzt.
- 2) Parameter STORED_VALUE auslesen. Dieser enthält den abgespeicherten Wert.
- 3) Laborwert der Probe in den Parameter REFERENCE_VALUE schreiben. Parameter STORED_VALUE wird auf 0 zurückgesetzt. Das Gerät hat sich jetzt neu kalibriert.

Hinweis: Wenn der erste Schritt direkt vor Ort am Gerät durchgeführt wurde, dann entfällt der unter Punkt 1 beschriebene Arbeitsgang über den PROFIBUS.

Installation

Installationshinweise

- Die Installation des Geräts darf nur durch ausgebildete Fachkräfte unter Beachtung der einschlägigen Vorschriften und der Betriebsanleitung erfolgen!
- Bei der Installation müssen die technischen Daten und die Anschlusswerte beachtet werden!
- Leitungsadern dürfen beim Abisolieren nicht eingekerbt werden!
- Bei der Inbetriebnahme muss eine vollständige Konfigurierung durch den Systemspezialisten erfolgen!

Anschlussklemmen

Bei einem Anzugsdrehmoment von 0,5 bis 0,6 Nm sind folgende Leiterquerschnitte zulässig:

Anschluss	Querschnitt
Leiterquerschnitt starr/flexibel	0,2 2,5 mm ²
Leiterquerschnitt flexibel mit Aderendhülse ohne Kunststoffhülse	0,25 2,5 mm ²
Leiterquerschnitt flexibel mit Aderendhülse mit Kunststoffhülse	0,2 1,5 mm ²

Einsatz in explosionsgefährdeten Bereichen (nur Stratos Pro A221X)

Für den Einsatz in explosionsgefährdeten Bereichen die Angaben der Control Drawing beachten!

Messmodule für den Anschluss analoger Sensoren: pH, Sauerstoff (Oxy), Leitfähigkeit (Cond, CondI, Cond-Cond)

Messmodule für den Anschluss analoger Sensoren werden einfach in den Modulschacht gesteckt.

Ändern des Messverfahrens

260

Wenn ein Messmodul getauscht wird, muss das entsprechende Messverfahren im Menü "Service" eingestellt werden.

Wechselmodul pH

261

Modul pH-Messung

Bestellnummer MK-PH015N / MK-PH015X Beschaltungsbeispiele siehe folgende Seiten

Klemmenschild Modul pH-Messung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Dem Messmodul liegt ein selbstklebendes Label bei. Bringen Sie das Label auf dem Modulschacht der Gerätefront auf. Sie haben so die Beschaltung sicher im Blick.

Beschaltungsbeispiele pH

рΗ

Beispiel 1

Messaufgabe: Sensor: Temperaturfühler: pH, Temperatur, Glasimpedanz pH-Sensor z. B. SE 555X/1-NS8N, Kabel ZU 0318 separat

Beschaltungsbeispiele pH

рΗ

Beispiel 2

Messaufgabe: Sensor: Temperaturfühler: Potentialausgleichselektrode: pH/ORP, Temperatur, Glasimpedanz, Bezugsimpedanz pH-Sensor z. B. SE 555X/1-NS8N, Kabel ZU 0318 separat ZU 0073

Beschaltungsbeispiele pH

рΗ

Beispiel 3

Messaufgabe: Sensor: Kabel: Temperaturfühler: pH, Temperatur, Glasimpedanz pH-Sensor z. B. SE 554X/1-NVPN CA/VP6ST-003A (ZU 0313) integriert

Beschaltungsbeispiele pH

рΗ

265

Beispiel 4

Messaufgabe: Sensor: Temperaturfühler: Potentialausgleichselektrode: pH/ORP, Temperatur, Glasimpedanz, Bezugsimpedanz pH-Sensor z. B. SE 555X/1-NVPN, Kabel ZU 0313 integriert ZU 0073

wecnseimodui MK-PH015N / MK-PH015X

рН

Beispiel 5

Achtung! Es darf kein zusätzlicher analoger Sensor angeschlossen werden!

Messaufgabe: Sensor: Temperaturfühler: Potentialausgleichselektrode: pH/ORP, Temperatur, Glasimpedanz, Bezugsimpedanz pH-Sensor z. B. ISM digital, Kabel AK9 integriert integriert

Beschaltungsbeispiele pH

рΗ

Beispiel 6

Hinweis: Sensocheck ausschalten! Messaufgabe: OR Sensor: OR Temperaturfühler: sep

ORP, Temperatur, Bezugsimpedanz ORP-Sensor z. B. SE 564X/1-NS8N, Kabel ZU 0318 separat

рΗ

Beispiel 7

470n

Pfaudler-Sonde

Anschluss von Pfaudler-Sonden

Мо	dul	pH Reiner mit PA, VP-Steckkopf	Differential Typen 18/40 mit PA	Typen 03/04 mit PA	Typen 03/04 ohne PA
A	meas	Koax Seele	Koax weiß	Koax weiß	Koax weiß
В	ref	Koax Schirm	Koax braun	Koax braun	Koax braun
С	SG	blau	blau	blau	Brücke B/C
D					
Е					
F					
G					
Н	RTD (GND)	grün	braun	braun	braun
I	RTD	weiß	grün, schwarz	grün, schwarz	grün, schwarz
К	Shield	grün/gelb, grau	orange, violett	orange, violett	orange, violett

Wechselmodul Oxy

269

Modul Sauerstoff-Messung

Bestellnummern: MK-OXY046N / MK-OXY045X Beschaltungsbeispiele siehe folgende Seiten

Klemmenschild Modul Sauerstoff-Messung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Dem Messmodul liegt ein selbstklebendes Label bei. Bringen Sie das Label auf dem Modulschacht der Gerätefront auf. Sie haben so die Beschaltung sicher im Blick.

Beispiel 1

Messaufgabe: Sensor: Sauerstoff STANDARD "10" (z.B. SE 706), Kabel CA/VP6ST-003A (ZU 0313)

Beschaltungsbeispiele Oxy

Оху

271

Beispiel 2

Messaufgabe: Sensor: Sauerstoff TRACES "01" (z.B. SE 707), Kabel CA/VP6ST-003A (ZU 0313)

Beispiel 3

Messaufgabe: Sensor: Sauerstoff SUBTRACES "001" (z.B. SE 708), Kabel CA/VP6ST-003A (ZU 0313)

Beschaltungsbeispiel opt. Sensor

Beispiel 1

Messaufgabe: Sensor: Sauerstoff optisch (LDO) SE 740, Kabel z. B. CA/M12-005N485 nur A451N

Wechselmodul Cond

Modul Leitfähigkeitsmessung konduktiv (Cond)

Bestellnummern: MK-COND025N / MK-COND025X Beschaltungsbeispiele siehe folgende Seiten

Klemmenschild Modul Cond-Messung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Dem Messmodul liegt ein selbstklebendes Label bei. Bringen Sie das Label auf dem Modulschacht der Gerätefront auf. Sie haben so die Beschaltung sicher im Blick.

Beschaltungsbeispiele Cond

Cond

275

Beispiel 1

Messaufgabe: Sensor: Leitfähigkeit, Temperatur 4 Elektroden

Beschaltungsbeispiele Cond

Cond

Beispiel 2

Messaufgabe: Sensor: Leitfähigkeit, Temperatur 2 Elektroden, koaxial

Beschaltungsbeispiele Cond

Cond

277

Beispiel 3

Messaufgabe: Sensor: Leitfähigkeit, Temperatur SE 604, Kabel ZU 0645

Beschaltungsbeispiele Cond

Beispiel 4

Cond

Messaufgabe: Sensor:

Leitfähigkeit, Temperatur SE 630

Beschaltungsbeispiele Cond

Cond

279

Beispiel 5

Messaufgabe: Sensor: Leitfähigkeit, Temperatur 4-EL-Streufeld-Sensor SE 600 oder SE 603

Beschaltungsbeispiele Cond

Cond

Beispiel 6

Messaufgabe: Sensor: Leitfähigkeit, Temperatur Memosens **ACHTUNG!** Anschluss an die RS-485-Schnittstelle! Wechselmodul muss entfernt werden!

Der Memosens-Sensor wird an die RS-485-Schnittstelle des Messgerätes angeschlossen.

Wechselmodul Condl

281

Modul Leitfähigkeitsmessung induktiv (Condl)

Bestellnummern:

MK-CONDI035N / MK-CONDI035X Beschaltungsbeispiele siehe folgende Seiten

Klemmenschild Modul Condl

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Dem Messmodul liegt ein selbstklebendes Label bei. Bringen Sie das Label auf dem Modulschacht der Gerätefront auf. Sie haben so die Beschaltung sicher im Blick.

Kabelvorbereitung SE 655 / SE 656

Condl

Vorbereitung Schirmanschluss

Vorkonfektioniertes Spezialmesskabel für Sensoren SE 655 / SE 656

- Das Spezialmesskabel durch die Kabeldurchführung in den Anschlussraum führen.
- Den bereits abgetrennten Teil der Kabelisolierung (1) entfernen
- Abschirmgeflecht (2) nach außen über die Kabelisolierung stülpen (3).
- Anschließend Quetschring (4) über das Abschirmgeflecht führen und mit einer Zange zusammenziehen (5).

Das vorbereitete Spezialmesskabel:

Beschaltungsbeispiele Condl

Condl

283

Beispiel 1

Messaufgabe: Sensor: Leitfähigkeit induktiv, Temperatur SE 655 oder SE 656

Beschaltungsbeispiele Condl

Condl

Beispiel 2

Messaufgabe: Sensor: Leitfähigkeit induktiv, Temperatur SE 660

Beschaltungsbeispiele Condl

Condl

285

Beispiel 3

Messaufgabe: Sensor: Leitfähigkeit induktiv, Temperatur Yokogawa ISC40 (Pt1000)

Für die Konfigurierung dieses Sensors erforderliche Eingaben:

SENSOR	Leitfähigkeit, Temperatur
Sensor:	OTHER
RTD TYPE	1000Pt
CELL FACTOR	1,88
TRANS RATIO	125

Beschaltungsbeispiele Condl

Condl

Beispiel 4

nur für Stratos Pro A221N / A221X

Messaufgabe: Sensor: Leitfähigkeit induktiv, Temperatur Yokogawa IC40S (NTC 30k)

Für die Konfigurierung dieses Sensors erforderliche Eingaben:

SENSOR	Leitfähigkeit, Temperatur
Sensor:	OTHER
RTD TYPE	30 NTC
CELL FACTOR	ca. 1,7
TRANS RATIO	125

Beschaltungsbeispiele Condl

Condl

287

Beispiel 5

Messaufgabe:Leitfähigkeit induktiv, TemperaturSensor:SE 670/C1, SE 680/D1, SE 680N-C1N4U00MKabel:CA/M12-005NAAchtung! Anschluss an die RS-485-Schnittstelle!
Wechselmodul muss entfernt werden!

Bei der Auswahl des Sensors SE 670/C1 (SE 680/D1) im Menü Konfiguration werden die Default-Werte als Kalibrierdaten übernommen und können anschließend durch eine Kalibrierung verändert werden.

Achtung: Die Kalibrierdaten des SE 670/C1 (SE 680/D1) werden im Gerät und nicht im Sensor gespeichert.

Wechselmodul Dual-Leitfähigkeit

CC

Achtung! Dieses Modul darf nicht am Stratos Pro A221X eingesetzt werden!

Modul Dual-Leitfähigkeitsmessung

Bestellnummer MK-CC065N Beschaltungsbeispiele siehe folgende Seiten

Klemmenschild Dual-Leitfähigkeitsmessung

Anschlussklemmen geeignet für Einzeldrähte / Litzen bis 2,5 mm²

Dem Messmodul liegt ein selbstklebendes Label bei. Bringen Sie das Label auf dem Modulschacht der Gerätefront auf. Sie haben so die Beschaltung sicher im Blick.

Beschaltungsbeispiele Cond-Cond

CC

289

Beispiel 1

Messaufgabe: Sensor: Dual-Leitfähigkeit, Temperatur 2 koaxiale Sensoren

Beschaltungsbeispiele Cond-Cond

Beispiel 2

Messaufgabe: Sensor: Kabel: Dual-Leitfähigkeit, Temperatur 2 x SE 604 2 x ZU 0645

Beschaltungsbeispiele Cond-Cond

CC

Beispiel 3

Messaufgabe: Sensor: Dual-Leitfähigkeit, Temperatur 2 x SE 610

291

Ändern des Messverfahrens

Ein anderes Messverfahren kann jederzeit im Menü "Service" eingestellt werden.

Kalibrierung und Wartung im Labor

Die Software "MemoSuite" erlaubt das Kalibrieren von Memosens-Sensoren unter reproduzierbaren Bedingungen am PC im Labor. Die Sensor-Parameter werden in einer Datenbank erfasst. Dokumentation und Archivierung entsprechen Anforderungen gemäß FDA CFR 21 Part 11. Detaillierte Protokolle können als csv-Export für Excel ausgegeben werden. MemoSuite wird als Zubehör in den Versionen "Basic" und "Advanced" angeboten: www.knick.de.

Beschaltungsbeispiele Memosens

рΗ

293

Beispiel 1

Messaufgabe:

Kabel (Beispiel):

Sensoren (Beispiel):

pH/ORP, Temp., Glasimpedanz, Bezugsimpedanz SE 554N/1-AMSN, Memosens CA/MS-003NAA

ACHTUNG! Wechselmodul muss entfernt werden.

Beschaltungsbeispiele Memosens

рΗ

Beispiel 2

Messaufgabe:

Sensoren (Beispiel):

Kabel (Beispiel):

pH, Temperatur, Glasimpedanz SE 555X/1-NMSN Memosens CA/MS-003XAA

ACHTUNG! Wechselmodul muss entfernt werden.

Memosens-Sensor anschließen

Stratos Pro A221N / A221X

Stratos Evo A451N

ACHTUNG! Das Wechselmodul muss entfernt werden.

Stratos Pro A221N / A221X

BUS Kommunikation	PROFIBUS PA (DP-V1)		
Physikalische Schnittstelle Betriebsart	nach EN 61158-2 (IEC 61158-2), MBP-IS Busspeisung mit Konstantstromaufnahme		
Speisespannung	FISCO ≤ 17,5 V (trapez- oder rechteckförmige Kennli		
	lineare Kennlinie	$\leq 26 \text{ V}$	
	nicht-Ex	≤ 32 V	
Stromaufnahme	< 20 mA		
Max. Strom im Fehlerfall ¹⁾	20,4 mA		
Explosionsschutz (A221X)	siehe Control Drawing bzw. www.knick.de		
Nennbetriebsbedingungen			
Klimaklasse	3K5 nach EN 60721-3-3		
Einsatzortklasse	C1 nach EN 60654-1		
Umgebungstemperatur –20 65 °C / –4 149 °F		149 °F	
	für den Ex-Bereich, T4: –20 65 °C / –4 149 °F		
	fur den Ex-Bereich, I	6: −20 50 °C / −4 122 °F	
Relative Feuchte	5 95 %		
Transport und Lagerung			
Transport-/Lagertemperatur	–30 70 °C / –22	. 158 °F	
Busanschluss	3 Klemmen steckbar		
	PA-Anschluss		
Eingang CONTROL	galvanisch getrennt	(Optokoppler)	
Funktion	Durchflussmessung (FLOW)		
FLOW	Impulseingang für D Anzeige 00,0	urchflussmessung 0 100 Impulse/s 99,9 I/h	
RoHS-Konformität	nach EU-Richtlinie 20	011/65/EU	

1) einschließlich Stromerhöhung durch die geräteeigene Fault Disconnection Electronic (FDE)

Stratos Evo A451N

BUS Kommunikation	PROFIBUS DP (DP-V1)
Physikalische Schnittstelle	RS-485
Baudrate	9,6 kbit/s 1,5 Mbit/s
Hilfsenergie	80 V (-15%) 230 (+10%) V AC, ca. 15 VA, 45 65 Hz
	24 V (-15%) 60 (+10%) V DC, 10 W
	Überspannungskategorie II, Schutzklasse II
Elektrische Sicherheit	Schutz gegen gefährliche Körperströme durch sichere Trennung aller Kleinspannungskreise gegen Netz nach EN 61010-1
Nennbetriebsbedingungen	
Klimaklasse	3K5 nach EN 60721-3-3
Einsatzortklasse	C1 nach EN 60654-1
Umgebungstemperatur	–20 … 65 °C / –4 … 149 °F
Relative Feuchte	5 95 %
Transport und Lagerung	
Transport-/Lagertemperatur	–30 70 °C / –22 158 °F
Busanschluss	6 Klemmen
	DP-Anschluss
REL1/REL2	Kontakte Relais 1 und Relais 2, potenzialfrei
Kontaktbelastbarkeit	AC < 250 V /< 3 A / < 750 VA
	DC < 30 V /< 3 A / < 90 W
Kontaktverhalten	Die Relais sind entweder über PROFIBUS oder lokal steuerbar. PROFIBUS: Steuerung über Funktionsblöcke DO1 und DO2
Power Out	über Software einstellbare Spannung zur Sensorversorgung (SE 740)
Spannungen	3,1 V / 12 V / 15 V / 24 V
Leistung	maximal 1 W
Eingang CONTROL	galvanisch getrennt (Optokoppler)
Funktion	Durchflussmessung (FLOW)
FLOW	Impulseingang für Durchflussmessung 0 100 Impulse/s Anzeige 00,0 99,9 l/h

Allgemeine Daten	
Echtzeituhr	Verschiedene Zeit- und Datumsformate wählbar
Gangreserve	> 5 Tage
Über Bus einstellbar	
Anzeige	Anzeige LC-Display, 7-Segment mit Symbolen
Hauptanzeige	Zeichenhöhe ca. 22 mm, Messwertzeichen ca. 14 mm
Nebenanzeige	Zeichenhöhe ca. 10 mm
Hintergrundbeleuchtung	mehrfarbig, bei Temperaturklasse T6 ggf. abgeschaltet
Textzeile	14 Zeichen, 14-Segment
Sensoface	3 Zustandsanzeigen (Gesicht freundlich, neutral, traurig)
Statusanzeigen	meas, cal, conf, diag weitere Piktogramme für Konfigurierung und Meldungen
Alarmanzeige	rote Hinterleuchtung bei Alarm
Tastatur	Tasten: meas, info, 4 Cursor-Tasten, enter Tastenmaterial: EPDM
FDA CFR 21 Part 11	Zugangskontrolle über veränderbare Passzahlen Bei Konfigurationsänderung Logbucheintrag Meldung und Logbucheintrag beim Öffnen des Gehäuses
Diagnosefunktionen	
Kalibrierdaten	Kalibrierdatum, Nullpunkt, Steilheit und Einstellzeit
Geräteselbsttest	automatischer Speichertest (RAM, FLASH, EEPROM)
Displaytest	Anzeige aller Segmente
Logbuch	Audit Trail: 100 Ereignisse mit Datum und Uhrzeit
Servicefunktionen	
Sensormonitor	Anzeige der direkten Sensorsignale
Devicetyp	Festlegung des Gerätetyps
Datenerhaltung	Parameter und Kalibrierdaten > 10 Jahre (EEPROM)
Gehäuse	Kunststoffgehäuse glasfaserverstärkt Material Fronteinheit: PBT Material Untergehäuse: PC
Befestigung	Wand-, Mast-, Schalttafelbefestigung
Farbe	grau RAL 7001
Schutzart	IP66/IP67 / TYPE 4X Outdoor (mit Druckausgleich) bei geschlossenem Gerät
Brennbarkeit	UL 94 V-0
Abmessungen	148 mm x 148 mm
Schalttafelausschnitt	138 mm x 138 mm nach DIN 43 700

Gewicht	1,2 kg (1,6 kg incl. Zubehör und Verpackung)		
Kabeldurchführungen	5 Durchbrüche für Kabelverschraubungen M20 x 1,5 2 der 5 Durchbrüche für NPT ½ " bzw. Rigid Metallic Conduit		
Anschlüsse	Klemmen, Anziehdrehmoment: 0,5 0,6 Nm Leiterquerschnitt starr/flexibel: 0,2 2,5 mm ² Leiterquerschnitt flexibel mit Aderendhülse ohne Kunststoffhülse: 0,25 2,5 mm ² Leiterquerschnitt flexibel mit Aderendhülse mit Kunststoffhülse: 0,2 1,5 mm ²		
Verkabelung			
Abisolierlänge	max. 7 mm		
Temperaturbeständigkeit	> 75 °C / 167 °F		
EMV			
Störaussendung	Klasse A (Industriebereich) ¹⁾		
Störfestigkeit	Industriebereich		

рΗ

Eingang pH/mV	Eingang für pH- und Red	für pH- und Redoxsensoren (ORP) oder ISFET		
	Eingang Eingang Eingang	Glaselektrode od Bezugselektrode ORP-Elektrode (z für Impedanzme	ler ISFET . B. Platin) oder Hilfselektrode	
Messbereich Anzeigebereich	-1500 +1500 mV pH-Wert ORP	-2,00 +16,00 -1999 +1999 r	mV	
Glaselektrodeneingang 4)	Eingangswiderstand Eingangsstrom Impedanzmessbereich	> 1 x 10 ¹² Ω < 1 x 10 ⁻¹² A 0,5 … 1000 MΩ (±20%)		
Bezugselektrodeneingang ⁴⁾	Eingangswiderstand Eingangsstrom Impedanzmessbereich	> 1 x 10 ¹⁰ Ω < 1 x 10 ⁻¹⁰ A 0,5 200 kΩ (±2	20%)	
Messabweichung 1,2,3)	pH-Wert mV-Wert	< 0,02 < 1 mV	TK: 0,002 pH/K TK: 0,1 mV/K	
Sensoranpassung pH *)	pH-Kalibrierung			
Betriebsarten	AUTO	Kalibrierung mit automatischer Pufferfindung (Calimatic)		
	MAN	manuelle Kalibrierung mit Eingabe individueller Pufferwerte		
	DAT	Dateneingabe vorgemessener Elektroden		
	Produktkalibrierung			
Calimatic-Puffersätze "	-01- Mettler-Toledo -02- Knick CaliMat -03- Ciba (94) -04- NIST Technisch -05- NIST Standard -06- HACH -07- WTW techn. Puffer -08- Hamilton -09- Reagecon -10- DIN 19267 -U1- USER	2,00/4,01/7,00/9, 2,00/4,00/7,00/9, 2,06/4,00/7,00/10 1,68/4,00/7,00/10 1,679/4,006/6,86 4,01/7,00/10,01 2,00/4,01/7,00/10 2,00/4,01/7,00/10 2,00/4,00/7,00/9, 1,09/4,65/6,79/9, eingebbarer Puff	21 00/12,00 0,00 0,01/12,46 5/9,180 0,00 0,01/12,00 0,01/12,00 23/12,75 fersatz mit 2 Pufferlösungen	
Nullpunktverschiebung	±200 mV (nur ISFET) (±75	50 mV bei Memose	ens-ISFET)	
Max. Kalibrierbereich	Asymmetriepotenzial Steilheit (evtl. einschränkende Hir	±60 mV (±750 m 80 103 % (47,5 weise durch Senso	V bei Memosens ISFET) 5 61 mV/pH) oface)	

Technische Daten

Sensoranpassung ORP *) Max. Kalibrierbereich	Redox-Kalibrierung (Nullpunktverschiebung) −700 +700 ΔmV		
Temperatureingang	Pt100 / Pt1000 / NTC 30 k Anschluss 2-Leiter, abglei	Pt100 / Pt1000 / NTC 30 kΩ ") Anschluss 2-Leiter, abgleichbar	
Messbereich	Pt 100/Pt 1000	-20,0 +200,0 °C (-4 +392 °F)	
		-20,0 +150,0 °C (-4 +302 °F)	
	NIC 8,55 KD (Mitsubishi)	-10,0+130,0°C (+14+266°F)	
		-20,0 +130,0 C (-4 +200 1)	
Abgleichbereich	10 K		
Auflösung	0,1 °C (0,1 °F)		
Messabweichung 1,2,3)	< 0,5 K (< 1 K bei Pt100; <	1 K bei NTC 30 kΩ >100 °C)	
TK des Messmediums	linear –19,99 +19,99 % Tabelle: 0 95 °C eingeb	/K, Reinstwasser, Bezugstemperatur 25 °C bar in 5 K Stufen	
ISM-Eingang	"One wire"-Schnittstelle fi (6 V / Ri= ca. 1,2 kΩ)	ür den Betrieb mit ISM (digitalen Sensoren)	
Memosens-Schnittstelle	Memosens (Klemmen 1	. 4)	
Data In/Out	asynchrone Schnittstelle RS 485, 9600/19200 Bd		
Hilfsenergie	Klemme 1: +3,08 V/10 mA, Ri < 1 Ω , kurzschlussfest		
Adaptiver Kalibriertimer*)	Vorgabeintervall 0000	9999 h (Pat. DE 101 41 408)	
Dlagnosefunktionen			
Kalibrierdaten	Kalibrierdatum, Nullpunkt	t, Steilheit und Einstellzeit	
HE-Ausgang	für den Betrieb eines ISFE	T-Adapters	
	+3 V / 0,5 mA		
	–3 V / 0,5 mA		
Sensocheck	automatische Überwachu (abschaltbar)	ng von Glas- und Bezugselektrode	
Vezögerungszeit	ca. 30 s		
Sensoface Auswertung von	liefert Hinweise über den Nullpunkt/Steilheit, Kalibr	Zustand des Sensors (abschaltbar) 'ierintervall, Sensocheck, Verschleiß	
*) parametrierbar			

- 1) bei Nennbetriebsbedingungen
- ±1 Digit
 zuzüglich Sensorfehler
- 4) bei Raumtemperatur

Оху

Technische Daten

Standardausführung	Sensoren: SE 706, InPro 6800, Oxyferm		
Eingangsbereich	Messstrom -600 +2 nA	Auflösung 10 pA	
Messabweichung 1,2,3)	< 0,5% v. M.+ 0,05 nA + 0,005 r	nA/K	
Betriebsarten	GAS DO	Messung in Gasen Messung in Flüssigkeiten	
Anzeigebereiche	Sättigung (-10 +80 °C) Konzentration (-10 +80°C) (Gelöstsauerstoff) Volumenkonzentration in Gas	0,0 600,0 % 0,00 99,99 mg/l 0,00 99,99 ppm 0,00 99,99 Vol %	
Polarisationsspannung	-4001000 mV, Voreinstellu	ng -675 mV (Auflösung < 5 mV)	
Zul. Guard-Strom	≤ 20 μA		
Spurenmessung	Sensoren: SE 706/707; InPro 6800/6900/6950; Oxyferm/Oxygold		
Eingangsbereich I ⁴⁾	Messstrom -600 +2 nA	Auflösung 10 pA	
Messabweichung ^{1,2,3)}	< 0,5% v. M.+ 0,05 nA + 0,005 nA/K		
Eingangsbereich II ⁴⁾	Messstrom -10 000 +2 nA	Auflösung 166 pA	
Messabweichung	< 0,5% v. M.+ 0,8 nA + 0,08 nA/K		
Betriebsarten	GAS DO	Messung in Gasen Messung in Flüssigkeiten	
Messbereiche mit Standardsen	soren "10"		
	Sättigung (-10 +80 °C) Konzentration (-10 +80 °C) (Gelöstsauerstoff) Volumenkonzentration in Gas	0,0 600,0 % 0,00 99,99 mg/l 0,00 99,99 ppm 0,00 99,99 Vol %	
Messbereiche mit Spurensensc	oren "01"		
	Sättigung (-10 +80°C) Konzentration (-10 +80°C)	0,000 150,0 % 0000 9999 μg/l / 10,00 20,00 mg/l	
	(Gelöstsauerstoff) Volumenkonzentration in Gas	0000 9999 ppb / 10,00 20,00 ppm 0000 9999 ppm / 1,000 50,00 Vol %	

Messbereiche mit Spurense	nsoren "001" (wird nicht von Mei	msosens-Sensoren unterstützt)		
	Sättigung (-10 +80 °C)	0,000 150,0 %		
	Konzentration (-10 +80 °C)	000,0 … 9999 μg/l / 10,00 … 20,00 mg/l		
	(Gelöstsauerstoff)	000,0 9999 ppb / 10,00 20,00 ppm		
	Volumenkonzentration in Gas	000,0 9999 ppm / 1,000 50,00 Vol %		
Polarisationsspannung	01000 mV, Voreinstellung	-675 mV (Auflösung < 5 mV)		
Zul. Guard-Strom	≤ 20 μA			
Messung mit SE 740 (optisc	her Sensor) (nur Stratos Evo A45	1N)		
Messbereich	0 300 % Luftsättigung			
Nachweisgrenze	0,01 Vol %			
Ansprechzeit t ₉₈	< 30 s (bei 25 °C, von Luft zu S	stickstoff)		
Temperaturmessung	-10 +130 °C (Der Sensor lie	-10 +130 °C (Der Sensor liefert keinen Messwert oberhalb 85 °C)		
Eingangskorrektur	Druckkorrektur *)	0,000 9,999 bar / 999,9 kPa / 145,0 PSI		
		manuell oder über BUS AO-Block		
	Salzkorrektur	0,0 45,0 g/kg		
Sensoranpassung *)				
Betriebsarten *)	CAL_AIR automatische Kalibri	CAL_AIR automatische Kalibrierung an Luft		
	CAL_WTR automatische Kalib	CAL_WTR automatische Kalibrierung in luftgesättigtem Wasser		
	P_CAL Produktkalibrierung	P_CAL Produktkalibrierung		
	CAL_ZERO Nullpunktkalibrier	ung		
Kalibrierbereich	Nullpunkt (Zero)	±2 nA		
Standardsensor "10"	Steilheit (Slope)	25 130 nA (bei 25 °C, 1013 mbar)		
Kalibrierbereich	Nullpunkt (Zero)	±2 nA		
Spurensensor "01"	Steilheit (Slope)	200 550 nA (bei 25 °C, 1013 mbar)		
Kalibrierbereich	Nullpunkt (Zero)	±3 nA		
Spurensensor "001"	Steilheit (Slope)	2000 9000 nA (bei 25 °C, 1013 mbar)		
Kalibriertimer *)	Vorgabeintervall 0000 999	9 h		
Druckkorrektur *)	manuell 0,000 9,999 bar / 9	manuell 0,000 9,999 bar / 999,9 kPa / 145,0 PSI		
Memosens-Schnittstelle	Memosens (Klemmen 1 4)			
Data In/Out	asynchrone Schnittstelle RS 4	asynchrone Schnittstelle RS 485, 9600/19200 Bd		
Hilfsenergie	Klemme 1: +3,08 V/10 mA, Ri < 1 Ω , kurzschlussfest			

*) parametrierbar1) bei Nennbetriebsbedingungen

2) ±1 Digit

3) zuzüglich Sensorfehler

4) automatische Umschaltung der Bereiche

Cond

Technische Daten

Cond-Eingang	Eingang für 2-El/4	1-El-Sensoren oder Mem	osens
Messumfang	2-El-Sensoren: 0,2 μS * c 200 mS * c 4-El-Sensoren: 0,2 μS * c 1000 mS * c (Leitwert begrenzt auf 3500 mS)		
Messbereiche Leitfähigkeit 0,000 9,999 μS/ 00,00 99,99 μS/ 000,0 999,9 μS/ 000,0 999,9 μS/ 0000 999,9 μS/ 0000 999,9 μS/ 0000 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 999,9 μS/ 00,00 99,99 μS/		0,000 9,999 μS/cm 00,00 99,99 μS/cm 000,0 999,9 μS/cm 0000 9999 μS/cm 0,000 99,99 mS/cm 00,00 99,99 mS/cm 000,0 999,9 mS/cm 0,000 9,999 S/m	
Messabweichung ^{1,2,3)}	spez. Widerstand Konzentration Temperatur Salinität TDS Einstellzeit (t ₉₀) < 1 % v. M. + 0,4 µ	00,00 99,99 MΩ · cm 0,00 100 % -20,0 +150,0 °C (-4,0 0,0 45,0 ‰ 0,0 9999,9 mg/l ca. 1 s uS * c	+302,0 °F) (0 35 °C / 32 95 °F) (10 40 °C / 50 104 °F)
Temperaturkompensation *)	OFF	ohne	
(Bezugstemperatur eingebbar)		lineare Kennlinie 00 00	19 99 %/K
(Bezugstemperatur 25 °C)	nl F	natürliche Wässer nach	EN 27888
	nACL HCL nH3 nAOH	NaCl von 0 (Reinstwass Reinstwasser mit HCl-S Reinstwasser mit NH ₃ -S Reinstwasser mit NaOH	er) bis 26 Gew % (0 120 °C) puren (0 120 °C) ipuren (0 120 °C) I-Spuren (0 120 °C)
Konzentrationsbestimmung	-01- NaCl -02- HCl -03- NaOH -04- H ₂ SO ₄ -05- HNO3 -06- H ₂ SO ₄ -07- HCl -08- HNO ₃ -09- H ₂ SO ₄ -10- NaOH -U1-	0 - 26 Gew % (0 °C) 0 - 18 Gew % (-20 °C) 0 - 13 Gew % (0 °C) 0 - 26 Gew % (-17 °C) 0 - 30 Gew % (-20 °C) 94 - 99 Gew % (-20 °C) 22 - 39 Gew % (-20 °C) 35 - 96 Gew % (-20 °C) 28 - 88 Gew % (-17 °C) 15 - 50 Gew % (0 °C) eingebbare Konzentrat	0 - 28 Gew % (100 °C) 0 - 18 Gew % (50 °C) 0 - 24 Gew % (100 °C) 0 - 37 Gew % (110 °C) 0 - 30 Gew % (50 °C) 89 - 99 Gew % (115 °C) 35 - 96 Gew % (50 °C) 39 - 88 Gew % (115 °C) 35 - 50 Gew % (100 °C) ionstabelle

Technische Daten

Sensoranpassung	Eingabe Zellfaktor mit gleichzeitiger Anzeige der gewählten Messgröße und der Temperatur
	Eingabe Leitfähigkeit der Kalibrierlösung mit gleichzeitiger Anzeige des Zellfaktors und der Temperatur
	Produktkalibrierung für Leitfähigkeit
	Temperaturfühlerabgleich (10 K)
Zulässiger Zellfaktor	00,0050 19,9999 cm ⁻¹
Memosens-Schnittstelle	Memosens (Klemmen 1 4)
Data In/Out	asynchrone Schnittstelle RS 485, 9600/19200 Bd
Hilfsenergie	Klemme 1: +3,08 V/10 mA, Ri < 1 Ω, kurzschlussfest

*) parametrierbar

1) bei Nennbetriebsbedingungen

2) ±1 Digit

3) zuzüglich Sensorfehler

Cond

Condl

Condl-Eingang	Eingang für induktive Leitfähigkeitssensoren: SE 655, SE 656, SE 660, SE 670, SE 680, SE 680(N/X)-C1N4U00M		
Messumfang	Leitfähigkeit Konzentration Salinität	0,000 1 0,00 1 0,0 45	1999 mS/cm 00,0 Gew % ,0 ‰ (0 35 °C/32 95 °F)
Messbereiche	Leitfähigkeit	0,000 9,999 mS/cm	(nicht bei SE 660)
		00,00 99,99 mS/cm	
		000,0 999,9 mS/cm	
		0000 1999 mS/cm	
		0,000 9,999 S/m	
		00,00 99,99 S/m	
	Konzentration	0,00 9,99 % / 10,0 100,0 %	
	Salinität	0,0 45,0 ‰	(0 35 °C / 32 95 °F)
	TDS	0,0 9999,9 mg/l	(10 40 °C / 50 104 °F)
	Einstellzeit (t _{aa})	ca. 1 s	
Messabweichung 1,2,3)	< 1 % v. M. + 0,00)5 mS	
Temperaturkompensation *)	OFF	ohne	
(Bezugstemperatur eingebbar)	LIN	lineare Kennlinie 00,00	19,99 %/K
(Bezugstemperatur 25 °C)	nLF	natürliche Wässer nach	EN 27888
	nACL	Reinstwasser mit NaCl-Spuren (0 120 °C)	
	HCL	Reinstwasser mit HCI-Spuren (0 120 °C)	
	nH3	Reinstwasser mit NH3-Spuren (0 120 °C)	
	nAOH	Reinstwasser mit NaOH	l-Spuren (0 120 °C)
Konzentrationsbestimmung	-01- NaCl	0 - 26 Gew % (0 °C)	0 - 28 Gew % (100 °C)
	-02- HCl	0 - 18 Gew % (-20 °C)	0 - 18 Gew % (50 °C)
	-03- NaOH	0 - 13 Gew % (0 °C)	0 - 24 Gew % (100 °C)
	-04- H ₂ SO ₄	0 - 26 Gew % (-17 °C)	0 - 37 Gew % (110 °C)
	-05- HNO ₃	0 - 30 Gew % (-20 °C)	0 - 30 Gew % (50 °C)
	-06- H ₂ SO ₄	94 - 99 Gew % (-17 °C)	89 - 99 Gew % (115 °C)
	-07- HCl	22 - 39 Gew % (-20 °C)	22 - 39 Gew % (50 °C)
	-08- HNO ₃	35 - 96 Gew % (-20 °C)	35 - 96 Gew % (50 °C)
	-09- H ₂ SO ₄	28 - 88 Gew % (-17 °C)	39 - 88 Gew % (115 °C)
	-10- NaOH	15 - 50 Gew % (0 °C)	35 - 50 Gew % (100 °C)
	-U1-	eingebbare Konzentrat	tionstabelle

Technische Daten

307

Sensoranpassung	Eingabe Zellfaktor mit gleichzeitiger Anzeige der gewählten Messgröße und der Temperatur
	Eingabe Leitfähigkeit der Kalibrierlösung mit gleichzeitiger Anzeige des Zellfaktors und der Temperatur
	Produktkalibrierung für Leitfähigkeit
	Nullpunktabgleich
	Temperaturfühlerabgleich (10 K)
Zulässiger Zellfaktor	00,100 19,9999 cm ⁻¹
Zulässiger Übertragungsfaktor	010,0 199,9
Zulässige Nullpunktabweichung	±0,5 mS
Zulässiger Einbaufaktor	0,100 5,000
Sensocheck	Überwachung der Sende- und Empfangsspule und der Leitungen auf Unterbrechung, sowie der Sendespule und Leitungen auf Kurzschluss
Verzögerungszeit	ca. 30 s
Sensoface	liefert Hinweise über den Zustand des Sensors (Nullpunkt, Sensocheck)
Sensormonitor	Anzeige der direkten Sensormesswerte zur Validierung Widerstand/ Temperatur
Temperaturhochrechnung	Hochrechnung der Temperatur nach dem TICK-Verfahren bei gravierender Änderung (nur für Standardsensoren SE 670/SE 680)
Memosens-Schnittstelle	Memosens (Klemmen 1 4)
Data In/Out	asynchrone Schnittstelle RS 485, 9600/19200 Bd
Hilfsenergie	Klemme 1: +3,08 V/10 mA, Ri < 1 Ω , kurzschlussfest

*) parametrierbar

1) bei Nennbetriebsbedingungen

2) ±1 Digit
 3) zuzüglich Sensorfehler

СС

Cond-Eingänge A/B	2 Eingänge für 2	El-Sensoren, nur übe	r MK-Modul		
Messbereich	0 30 000 µS *	с			
Anzeigebereiche	Leitfähigkeit	0,000 9,999 μS/c 00,00 99,99 μS/c 000,0 999,9 μS/c 0000 9999 μS/cr 00.00 99.99 MΩ	m m m n cm		
	Einstellzeit (t.,)	ca. 1 s			
Messabweichung 1,2,3)	< 1 % v. M. + 0,4	μ*c			
Memosens-Schnittstelle	Memosens (Klen	nmen 1 4)			
Data In/Out	asynchrone Schr	nittstelle RS 485, 9600	/19200 Bd		
Hilfsenergie	Klemme 1: +3,08	8 V/10 mA, Ri < 1 Ω , kurzschlussfest			
Temperaturkompensation *)	OFF	ohne			
(Bezugstemperatur 25 °C)	LIN	lineare Kennlinie 00,00 19,99 %/K			
	nLF	natürliche Wässer nach EN 27888			
	nACL	NaCl von 0 (Reinstv	NaCl von 0 (Reinstwasser) bis 26 Gew % (0 120 °C)		
	HCL	Reinstwasser mit H	Reinstwasser mit HCI-Spuren (0 … 120 °C)		
	nH3	Reinstwasser mit N	H3-Spuren (0 120 °C)		
	nAOH	Reinstwasser mit N	aOH-Spuren (0 120 °C)		
Sensoranpassung					
Kanal A/B	Eingabe Zellfakt und der Tempera	or mit gleichzeitiger A atur	nzeige des Leitfähigkeitswerte		
Zulässiger Zellfaktor	0,0050 1,9999	9 cm ⁻¹			
Berechnungen (CALC)	-C1- Differenz	A-B	[uS/cm]		
	-C2- Ratio	A/B	00,00 19,99		
	-C3- Passage	B/A * 100	000,0 199,9 %		
	-C4- Rejection	(A-B)/A * 100	-199,9 199,9 %		
	-C5- Deviation	(B-A)/A * 100	-199,9 199,9 %		
	-C6- pH-Wert	nach VGB	[pH]		
	-C7- pH-Wert	variabel, Faktoren e	eingebbar [pH]		
	-C8- User spec	(DAC Degassed Aci	d Conductivity) [µS/cm]		
	-C9- Alkalising	Konzentration des	Alkalisierungsmittels		
Temperatureingang A/B *)	Pt1000, Anschlu	ss 2-Leiter			
Messbereich	-50 +200 °C(-58 +392 °F)			
Auflösung	0,1 °C (0,1 °F)				
Autosung					

bei Nennbetriebsbedingungen
 ±1 Digit

3) zuzüglich Sensorfehler

Puffertabellen

рΗ

-01- Mettler-Toledo

(entspricht ehemaligen "Knick technische Puffer") Nennwerte bei 25 °C: 2,00 / 4,01 / 7,00 / 9,21

°C		рН		
0	2,03	4,01	7,12	9,52
5	2,02	4,01	7,09	9,45
10	2,01	4,00	7,06	9,38
15	2,00	4,00	7,04	9,32
20	2,00	4,00	7,02	9,26
25	2,00	4,01	7,00	9,21
30	1,99	4,01	6,99	9,16
35	1,99	4,02	6,98	9,11
40	1,98	4,03	6,97	9,06
45	1,98	4,04	6,97	9,03
50	1,98	4,06	6,97	8,99
55	1,98	4,08	6,98	8,96
60	1,98	4,10	6,98	8,93
65	1,99	4,13	6,99	8,90
70	1,99	4,16	7,00	8,88
75	2,00	4,19	7,02	8,85
80	2,00	4,22	7,04	8,83
85	2,00	4,26	7,06	8,81
90	2,00	4,30	7,09	8,79
95	2,00	4,35	7,12	8,77

-02- Knick CaliMat

(Werte gelten auch für Merck-Titrisole, Riedel-de-Haen Fixanale) Nennwerte bei 20 °C: 2,00 / 4,00 / 7,00 / 9,00 / 12,00

°C			рН		
0	2,01	4,05	7,09	9,24	12,58
5	2,01	4,04	7,07	9,16	12,39
10	2,01	4,02	7,04	9,11	12,26
15	2,00	4,01	7,02	9,05	12,13
20	2,00	4,00	7,00	9,00	12,00
25	2,00	4,01	6,99	8,95	11,87
30	2,00	4,01	6,98	8,91	11,75
35	2,00	4,01	6,96	8,88	11,64
40	2,00	4,01	6,96	8,85	11,53
50	2,00	4,01	6,96	8,79	11,31
60	2,00	4,00	6,96	8,73	11,09
70	2,00	4,00	6,96	8,70	10,88
80	2,00	4,00	6,98	8,66	10,68
90	2,00	4,00	7,00	8,64	10,48

Pufferlösungen Knick CaliMat

pH-Wert [20 °C]	Menge	Bestellnr.
2,00 ±0,02	250 ml	CS-P0200/250
4,00 ±0,02	250 ml	CS-P0400/250
4,00 ±0,02	1000 ml	CS-P0400/1000
4,00 ±0,02	3000 ml	CS-P0400/3000
7,00 ±0,02	250 ml	CS-P0700/250
7,00 ±0,02	1000 ml	CS-P0700/1000
7,00 ±0,02	3000 ml	CS-P0700/3000
9,00 ±0,02	250 ml	CS-P0900/250
9,00 ±0,02	1000 ml	CS-P0900/1000
9,00 ±0,02	3000 ml	CS-P0900/3000
12,00 ±0,05	250 ml	CS-P1200/250

Puffertabellen

рΗ

311

-03- Ciba (94) Puffer

Nennwerte: 2,06 / 4,00 / 7,00 / 10,00

°C		F	рΗ	
0	2,04	4,00	7,10	10,30
5	2,09	4,02	7,08	10,21
10	2,07	4,00	7,05	10,14
15	2,08	4,00	7,02	10,06
20	2,09	4,01	6,98	9,99
25	2,08	4,02	6,98	9,95
30	2,06	4,00	6,96	9,89
35	2,07	4,01	6,95	9,85
40	2,06	4,02	6,94	9,81
45	2,06	4,03	6,93	9,77
50	2,06	4,04	6,93	9,73
55	2,05	4,05	6,91	9,68
60	2,08	4,10	6,93	9,66
70	2,07	4,11	6,92	9,57
80	2,02	4,15	6,93	9,52
90	2,04	4,20	6,97	9,43

312

-04- Technische Puffer nach NIST Nennwerte bei 25 °C: 1,68 / 4,00 / 7,00 / 10,01 / 12,46

°C			рН		
0	1,67	4,00	7,12	10,32	13,42
5	1,67	4,00	7,09	10,25	13,21
10	1,67	4,00	7,06	10,18	13,01
15	1,67	4,00	7,04	10,12	12,80
20	1,68	4,00	7,02	10,06	12,64
25	1,68	4,01	7,00	10,01	12,46
30	1,68	4,02	6,99	9,97	12,30
35	1,69	4,03	6,98	9,93	12,13
40	1,69	4,03	6,98	9,89	11,99
45	1,70	4,05	6,98	9,86	11,84
50	1,71	4,06	6,97	9,83	11,71
55	1,72	4,08	6,97		11,57
60	1,72	4,09	6,97		11,45
65	1,73	4,10	6,98		
70	1,74	4,13	6,99		
75	1,75	4,14	7,01		
80	1,77	4,16	7,03		
85	1,78	4,18	7,05		
90	1,79	4,21	7,08		
95	1,81	4,23	7,11		

-05-	Standard-Puffer NIST
	NIST Standard (DIN 19266 : 2001)
	Nennwerte bei 25 °C: 1,679 / 4,006 / 6,865 / 9,180

°C		p	Н	
0	1,666	4,010	6,984	9,464
5	1,668	4,004	6,950	9,392
10	1,670	4,001	6,922	9,331
15	1,672	4,001	6,900	9,277
20	1,676	4,003	6,880	9,228
25	1,680	4,008	6,865	9,184
30	1,685	4,015	6,853	9,144
35	1,688	4,021	6,844	9,102
40	1,697	4,036	6,837	9,076
45	1,704	4,049	6,834	9,046
50	1,712	4,064	6,833	9,018
55	1,715	4,075	6,834	8,985
60	1,723	4,091	6,836	8,962
70	1,743	4,126	6,845	8,921
80	1,766	4,164	6,859	8,885
90	1,792	4,205	6,877	8,850
95	1,806	4,227	6,886	8,833

Hinweis:

Die pH(S)-Werte der einzelnen Chargen der sekundären Referenzmaterialien werden in einem Zertifikat eines akkreditierten Labors dokumentiert, das den entsprechenden Puffermaterialien beigegeben wird. Nur diese pH(S)-Werte dürfen als Standardwerte der sekundären Referenzpuffermaterialien verwendet werden. Entsprechend enthält diese Norm keine Tabelle mit praktisch verwendbaren Standard-pH-Werten. Lediglich zur Orientierung gibt die oben angeführte Tabelle Beispiele für pH(PS)-Werte.

314

-06- HACH Puffer

Nennwerte bei 25 °C: 4,01 / 7,00 / 10,01 (±0,02)

°C		рН	
0	4,00	7,11	10,30
5	4,00	7,08	10,23
10	4,00	7,05	10,17
15	4,00	7,03	10,11
20	4,00	7,01	10,05
25	4,01	7,00	10,01
30	4,01	6,98	9,96
35	4,02	6,97	9,92
40	4,03	6,97	9,88
45	4,05	6,96	9,85
50	4,06	6,96	9,82
55	4,07	6,96	9,79
60	4,09	6,96	9,76

-07- WTW techn. Puffer

Nennwerte bei 25 °C: 2,00 / 4,01 / 7,00 / 10,00

°C		F	ы	
0	2,03	4,00	7,12	10,32
5	2,02	4,00	7,09	10,25
10	2,01	4,00	7,06	10,18
15	2,00	4,00	7,04	10,12
20	2,00	4,00	7,02	10,01
25	2,00	4,01	7,00	10,01
30	1,99	4,02	6,99	9,97
35	1,99	4,03	6,98	9,93
40	1,98	4,03	6,98	9,89
45	1,98	4,05	6,98	9,86
50	1,98	4,06	6,97	9,83
55	1,98	4,08	6,97	
60	1,98	4,09	6,97	
65	1,99	4,10	6,98	
70	2,00	4,13	6,99	
75	2,00	4,14	7,01	
80	2,00	4,16	7,03	
85	2,00	4,18	7,05	
90	2,00	4,21	7,08	
95	2,00	4,23	7,11	

316

-08- Hamilton Duracal Puffer

Nennwerte bei 25 °C: 2,00 ±0,02 / 4,01 ±0,01 / 7,00 ±0,01 / 10,01 ±0,02 / 12,00 ±0,05

°C		pl	1		
0	1,99	4,01	7,12	10,23	12,58
5	1,99	4,01	7,09	10,19	12,46
10	2,00	4,00	7,06	10,15	12,34
15	2,00	4,00	7,04	10,11	12,23
20	2,00	4,00	7,02	10,06	12,11
25	2,00	4,01	7,00	10,01	12,00
30	1,99	4,01	6,99	9,97	11,90
35	1,98	4,02	6,98	9,92	11,80
40	1,98	4,03	6,97	9,86	11,70
45	1,97	4,04	6,97	9,83	11,60
50	1,97	4,05	6,97	9,79	11,51
55	1,98	4,06	6,98	9,75	11,42
60	1,98	4,08	6,98	9,72	11,33
65	1,98	4,10	6,99	9,69	11,24
70	1,99	4,12	7,00	9,66	11,15
75	1,99	4,14	7,02	9,63	11,06
80	2,00	4,16	7,04	9,59	10,98
85	2,00	4,18	7,06	9,56	10,90
90	2,00	4,21	7,09	9,52	10,82
95	2,00	4,24	7,12	9,48	10,74

-09- Reagecon Puffer

Nennwerte bei 25 °C: 2,00 / 4,00 / 7,00 / 9,00 / 12,00

°C			рН		
0	2,01	4,01	7,07	9,18	12,54
5	2,01	4,01	7,07	9,18	12,54
10	2,01	4,00	7,07	9,18	12,54
15	2,01	4,00	7,04	9,12	12,36
20	2,01	4,00	7,02	9,06	12,17
25	2,00	4,00	7,00	9,00	12,00
30	1,99	4,01	6,99	8,95	11,81
35	2,00	4,02	6,98	8,90	11,63
40	2,01	4,03	6,97	8,86	11,47
45	2,01	4,04	6,97	8,83	11,39
50	2,00	4,05	6,96	8,79	11,30
55	2,00	4,07	6,96	8,77	11,13
60	2,00	4,08	6,96	8,74	10,95
65	2,00	4,10	6,99	8,70	
70	2,00	4,12	7,00	8,67	
75	2,00	4,14	7,02	8,64	
80	2,00	4,16	7,04	8,62	
85	2,00	4,18	7,06	8,60	
90	2,00	4,21	7,09	8,58	
95	2,00	4,24	7,12	8,56	

318

-10- DIN 19267 Puffer

Nennwerte bei 25 °C: 1,09 / 4,65 / 6,79 / 9,23 / 12,75

°C			рН		
0	1,08	4,67	6,89	9,48	
5	1,08	4,67	6,87	9,43	
10	1,09	4,66	6,84	9,37	13,37
15	1,09	4,66	6,82	9,32	13,16
20	1,09	4,65	6,80	9,27	12,96
25	1,09	4,65	6,79	9,23	12,75
30	1,10	4,65	6,78	9,18	12,61
35	1,10	4,65	6,77	9,13	12,45
40	1,10	4,66	6,76	9,09	12,29
45	1,10	4,67	6,76	9,04	12,09
50	1,11	4,68	6,76	9,00	11,89
55	1,11	4,69	6,76	8,96	11,79
60	1,11	4,70	6,76	8,92	11,69
65	1,11	4,71	6,76	8,90	11,56
70	1,11	4,72	6,76	8,88	11,43
75	1,11	4,73	6,77	8,86	11,31
80	1,12	4,75	6,78	8,85	11,19
85	1,12	4,77	6,79	8,83	11,09
90	1,13	4,79	6,80	8,82	10,99

Eingebbarer Puffersatz -U1-

Der Anwender kann einen Puffersatz mit 2 Pufferlösungen im Temperaturbereich von 0 ... 95 °C selbst vorgeben, Schrittweite: 5 °C. Hierzu wird in der Konfigurierung der Puffersatz -U1- ausgewählt. Bei Auslieferung ist der Puffersatz mit den Ingold techn. Pufferlösungen pH 4,01 / 7,00 vorbelegt und kann editiert werden.

Bedingungen für den eingebbaren Puffersatz:

- Alle Werte müssen im Bereich 0 ... 14 pH liegen.
- Die Differenz zweier benachbarter pH-Werte (Abstand 5 °C) der gleichen Pufferlösung darf maximal pH 0,25 betragen.
- Die Werte der Pufferlösung 1 müssen kleiner sein als die der Pufferlösung 2 hierfür gilt: Der Abstand temperaturgleicher Werte zwischen den beiden Pufferlösungen muss größer sein als 2 pH.

Bei fehlerhafter Eingabe wird im Messmodus die Fehlermeldung "FAIL BUFFERSET -U1-" ausgegeben.

Zur Pufferanzeige in der Kalibrierung wird immer der 25 °C-Wert herangezogen.

Hinweis: Verwenden Sie zur komfortablen Eingabe ein Parametriertool wie z. B. **SIMATIC PDM** von Siemens.

319

рΗ

Schritt	Aktion/Display	Bemerkung
Auswahl Puffersatz -U1- (Menü CONFIG / SNS)	- LI I - USR SNS: BUFFER SET	
Pufferlösung 1 zum Editieren auswählen	Mit Auf-/Ab-Taste Auswahl "YES"	Die Sicherheitsabfrage soll verhindern, dass Sie versehent- lich in die Eingabeprozedur gelangen.
Editieren der Werte Pufferlösung 1	Editieren: Pfeiltasten, Bestätigen und weiter zum nächsten Temperaturwert mit enter.	Die Werte der ersten Pufferlösung sind im Schrittabstand von 5 °C einzu- tragen. Dabei darf die Differenz zum jeweils nächsten Wert nicht mehr als pH 0,25 betragen.
Pufferlösung 2 zum Editieren auswählen	- 11 1- YES Edit Buffer 2	Der Abstand temperaturglei- cher Pufferlösungen muss grö- ßer sein als pH 2.

Eingebbarer Puffersatz -U1-

рΗ

Puffersatz U1:

Tragen Sie Ihre Konfigurierdaten ein oder nutzen Sie die Tabelle als Kopiervorlage.

Temperatur [°C]	Puffer 1	Puffer 2
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		
65		
70		
75		
80		
85		
90		
95		

Cond

Kaliumchlorid-Lösungen (Leitfähigkeit in mS/cm)

Konzentration¹⁾ Temperatur

[°C]	0,01 mol/l	0,1 mol/l	1 mol/l
0	0,776	7,15	65,41
5	0,896	8,22	74,14
10	1,020	9,33	83,19
15	1,147	10,48	92,52
16	1,173	10,72	94,41
17	1,199	10,95	96,31
18	1,225	11,19	98,22
19	1,251	11,43	100,14
20	1,278	11,67	102,07
21	1,305	11,91	104,00
22	1,332	12,15	105,94
23	1,359	12,39	107,89
24	1,386	12,64	109,84
25	1,413	12,88	111,80
26	1,441	13,13	113,77
27	1,468	13,37	115,74
28	1,496	13,62	
29	1,524	13,87	
30	1,552	14,12	
31	1,581	14,37	
32	1,609	14,62	
33	1,638	14,88	
34	1,667	15,13	
35	1,696	15,39	
36		15,64	

¹⁾ Datenquelle: K. H. Hellwege (Hrsg.), H. Landolt, R. Börnstein: Zahlenwerte und Funktionen ..., Band 2, Teilband 6

323 Cond

Natriumchlorid-Lösungen (Leitfähigkeit in mS/cm)

Temperatur	Konzentration		
[°C]	0,01 mol/l ¹⁾	0,1 mol/l ¹⁾	gesättigt ²⁾
0	0,631	5,786	134,5
1	0,651	5,965	138,6
2	0,671	6,145	142,7
3	0,692	6,327	146,9
4	0,712	6,510	151,2
5	0,733	6,695	155,5
6	0,754	6,881	159,9
7	0,775	7,068	164,3
8	0,796	7,257	168,8
9	0,818	7,447	173,4
10	0,839	7,638	177,9
11	0,861	7,831	182,6
12	0,883	8,025	187,2
13	0,905	8,221	191,9
14	0,927	8,418	196,7
15	0,950	8,617	201,5
16	0,972	8,816	206,3
17	0,995	9,018	211,2
18	1,018	9,221	216,1
19	1,041	9,425	221,0
20	1,064	9,631	226,0
21	1,087	9,838	231,0
22	1,111	10,047	236,1
23	1,135	10,258	241,1
24	1,159	10,469	246,2
25	1,183	10,683	251,3
26	1,207	10,898	256,5
27	1,232	11,114	261,6
28	1,256	11,332	266,9
29	1,281	11,552	272,1
30	1,306	11,773	277,4
31	1,331	11,995	282,7
32	1,357	12,220	288,0
33	1,382	12,445	293,3
34	1,408	12,673	298,7
35	1,434	12,902	304,1
36	1,460	13,132	309,5

¹⁾ Datenquelle: Prüflösungen gemäß DIN IEC 746, Teil 3 berechnet

²⁾ Datenquelle: K. H. Hellwege (Hrsg.), H. Landolt, R. Börnstein: Zahlenwerte und Funktionen ..., Band 2, Teilband 6

Cond CondI

Messbereiche

Stoff	Konzentrationsmessbereiche				
NaCl	0-26 Gew% (0 °C)				
	0-26 Gew% (100 °C)				
Konfigurierung	-01-				
HCI	0-18 Gew% (-20 °C)		22-39 Gew% (-20 °C)		
	0-18 Gew% (50 °C)		22-39 Gew% (50°C)		
Konfigurierung	-02-		-07-		
NaOH	0-13 Gew% (0 °C)		15-50 Gew% (0 °C)		
	0-24 Gew% (100 °C)		35-50 Gew% (100°C)		
Konfigurierung	-03-		-10-		
H,SO,	0-26 Gew% (-17 °C)	0-26 Gew% (-17 °C) 28-77 Gev		94-99 Gew% (-17°C)	
	0-37 Gew% (110°C)	' Gew% (110°C) 39-88 Gev		89-99 Gew% (115°C)	
Konfigurierung	-04-	-09-		-06-	
HNO,	0-30 Gew% (-20°C)		35-96 Gew% (-20°C)		
	0-30 Gew% (50°C)		35-96 Gew% (50°C)		
Konfigurierung	-05-		-08-		

Für die oben aufgeführten Lösungen kann das Gerät aus den gemessenen Leitfähigkeits- und Temperaturmesswerten die Stoffkonzentration in Gew% ermitteln. Der Messfehler setzt sich zusammen aus der Summe der Messfehler bei Leitfähigkeits- und Temperaturmessung und der Genauigkeit der im Gerät hinterlegten Konzentrationsverläufe. Es wird empfohlen, das Gerät mit dem Sensor zu kalibrieren, z. B. mit Methode CAL_CELL direkt auf die Konzentration. Für exakte Temperaturmesswerte muss ggf. ein Temperaturfühlerabgleich durchgeführt werden. Bei Messprozessen mit schnellen Temperaturwechseln sollte ein separater Temperaturfühler mit schnellem Ansprechverhalten eingesetzt werden.
Konzentrationsverläufe

-01- Natriumchloridlösung NaCl

325

Cond

Condl

Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Medientemperatur für Natriumchloridlösung (NaCl)

-02- Salzsäure HCl -07-

Bereich, in dem keine Konzentrationsmessung möglich ist.

Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Medientemperatur für Salzsäure (HCI) Quelle: Haase/Sauermann/Dücker; Z. phys. Chem. Neue Folge, Bd. 47 (1965)

Condl Cond

-03- Natronlauge NaOH -10-

Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Medientemperatur für Natronlauge (NaOH)

328 Konzentrationsverläufe Cond CondI -04- Schwefelsäure H₂SO₄ -06 -09 -09

Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Medientemperatur für Schwefelsäure (H $_2\rm SO_4)$

Quelle: Darling; Journal of Chemical and Engineering Data; Vol.9 No.3, July 1964

-05- Salpetersäure HNO₃ -08-

Leitfähigkeit in Abhängigkeit von Stoffkonzentration und Medientemperatur für Salpetersäure (HN0 $_3$)

Quelle: Haase/Sauermann/Dücker; Z. phys. Chem. Neue Folge, Bd. 47 (1965)

A

Abmessungen 16 ACT, Adaptiver Kalibriertimer (ISM), Konfigurierung Oxy 98 ACT, Adaptiver Kalibriertimer (ISM), Konfigurierung pH 50 Adaptiver Kalibriertimer ACT (ISM), Konfigurierung Oxy 98 Adaptiver Kalibriertimer ACT (ISM), Konfigurierung pH 50 Adaptiver Wartungstimer TTM (ISM), Konfigurierung Oxy 100 Adaptiver Wartungstimer TTM (ISM), Konfigurierung pH 52 Al-Block Cond 192 Al-Block Cond-Cond 193 Al-Block Condl 192 Al-Block Oxy 191 Al-Block pH 191 Al Function Block Parameter 218 Alarm, Beschreibung 36 Alarm, Sensocheck 121 Alarm, Verzögerungszeit 120 Ambulance-TAN, bei Verlust des Passcodes 163 Analogausgang (AO) 194 Analogeingang (AI) 190 Ändern des Messverfahrens 17 Anschlussbelegung PROFIBUS DP 185 Anschlussbelegung PROFIBUS PA 184 Anschlusslänge der Sensoren, maximale (Cond-Cond) 108 Anschluss von Memosens-Sensoren 22 Anschluss von Memosens-Sensoren, Menü 38 Anschlusswerte, Schnittstelle 296 Anzeige 30 Anzeige Uhrzeit/Datum 155 AO Function Block Parameters 220 Asymmetriepotenzial in Sensornullpunkt umrechnen 133 Ausgangsspannung einstellen (POWER OUT) 163 Außerbetriebnahme 178 Autoklavierzähler, ISM-Sensor (Oxy) 104 Autoklavierzähler, ISM-Sensor (pH) 56 Automatische Kalibrierung, pH 128

В

Bedienung, allgemein 28 Berechnungen (CALC), Gerätetyp Cond-Cond 109 Beschaltungsbeispiele Cond 275 Beschaltungsbeispiele Cond-Cond 289 Beschaltungsbeispiele Condl 283 Beschaltungsbeispiele Memosens Cond 280

Beschaltungsbeispiele Memosens pH 293 Beschaltungsbeispiele Oxy 270 Beschaltungsbeispiele pH 262 Beschaltungsbeispiel optischer Sensor (LDO) 273 Bestellnummern 179, 180 Bestimmungsgemäßer Gebrauch A221(N/X) 8 Bestimmungsgemäßer Gebrauch A451N 9 Betriebsarten, Kurzbeschreibung 33 Betriebsart Messen 28 Betriebsart wählen 34 Blockmodell 188 Busabschluss, PROFIBUS DP 185 Busparameter herstellerspezifischer Transducer Block (TB) 228 Busparameter Standard Transducer Block (TB) 226

С

Ciba (94) Puffer, Puffertabelle 311 CIP (Konfigurierung Cond) 73 CIP (Konfigurierung Condl) 87 CIP (Konfigurierung Oxy) 103 CIP (Konfigurierung pH) 55 Condl, Kalibrierung 152 Condl, Konfigurierung 80 Condl, Temperaturkompensation 88 Cond, Kalibrierung 150 Cond, Konfigurierung 66 Cond-Module, Übersicht 19 Cond, Temperaturkompensation 74 Control Drawings 7

D

Data Input (Kalibrierung pH) 132 Datenlogger, Einträge anzeigen 159 Datenlogger, Erläuterung 12 Datum, anzeigen 155 Datum einstellen 122 Default-Initialisierung 209 DEVICE_LOCK, Parameter 189 Device Type, Gerätetyp (Messverfahren) einstellen 162 Diagnose, Geräteselbsttest 158 Diagnose, Geräte- und Softwareversion 160 Diagnose, Kalibrierdaten 157 Diagnose, Logbuch 159 Diagnosemodus 156

Diagnose, Sensordaten 157 Diagnose, Sensormonitor 160 DI-Block 194 DI Function Block Parameters 222 Digitale Sensoren (Condl), Sensortyp auswählen 95 Digitale Sensoren (Cond), Sensortyp auswählen 67 Digitale Sensoren, Kalibrierung und Wartung 21 Digitale Sensoren (Oxy), Sensortyp auswählen 95 Digitale Sensoren (pH), Sensortyp auswählen 45 DIN 19267 Puffer, Puffertabelle 318 Display 30 Displaydarstellung im Messmodus 31 Display, Hauptanzeige wählen 31 **Displayhinterleuchtung 32** Displaytest 158 DO-Block 195 DO Function Block Parameters 224 Dokumentation 7 Druck, anzeigen 155 Druckeinheit, Konfigurierung Oxy 107 Druckkorrektur (Oxy) 106 Dual-Leitfähigkeitsmessung 111 Durchfluss, anzeigen 155 Durchflussmessung 118

Ε

EEPROM-Test, Geräteselbsttest 158 Eingebbarer Puffersatz -U1- 319 Einsatzbeispiel Stratos Evo A451N 14 Einsatzbeispiel Stratos Pro A221(N/X) 13 Einsatz in explosionsgefährdeten Bereichen 259 Entsorgung 178 Ergänzende Hinweise 2 ERR, Fehlermeldungen 165 Erstinbetriebnahme 208 EU-Konformitätserklärungen 7

F

Farben im Display 30 Fehlermeldungen 165 FISCO 183 FLASH-Test 158 Function Block (FB) 190

G

Gehäusekomponenten 15 Geräteselbsttest 158 Gerätestammdatei (GSD-Datei) 208 Gerätetyp anzeigen 160 Gerätetyp Cond-Cond 108 Gerätetyp Condl, Konfigurierung 80 Gerätetyp Cond, Konfigurierung 66 Gerätetyp Oxy, Konfigurierung 94 Gerätetyp pH, Konfigurierung 44

Η

HACH Puffer, Puffertabelle 314 Hamilton Duracal Puffer, Puffertabelle 316 Hauptmesswert, anzeigen 155 Hinterleuchtung 30 HOLD-Zustand, Konfigurierung 121

I

Identnummer umschalten 209 I&M-Funktionen 182 Inbetriebnahme 10 Inbetriebnahme am PROFIBUS 208 Inbetriebnahme, Messverfahren 27 Info-Text 165 Installation, Klemmenbelegung 259 Ionentauscher 109 Ionentauscher, rücksetzen der Verbrauchsberechnung 163 ISM-Sensoren (Oxy), adaptiven Kalibriertimer konfigurieren 98 ISM-Sensoren (Oxy), adaptiven Wartungstimer konfigurieren 100 ISM-Sensoren (Oxy), Autoklavierzähler konfigurieren 104 ISM-Sensoren (pH), adaptiven Wartungstimer konfigurieren 50 ISM-Sensoren (pH), Autoklavierzähler konfigurieren 52 ISM-Sensoren (pH), Autoklavierzähler konfigurieren 56

Κ

Kabelvorbereitung SE 655 / SE 656 282 Kalibrierdaten anzeigen 157 Kalibrierlösungen 322 Kalibriermodus konfigurieren (pH) 47 Kalibriermodus Luft/Wasser, Konfigurierung Oxy 97 Kalibriertimer, Konfigurierung Oxy 97 Kalibriertimer, Konfigurierung pH 49 Kalibrierung 124 Kalibrierung (Cond) 150

Kalibrierung (Condl) 152 Kalibrierung durch Eingabe des Zellfaktors 153 Kalibrierung durch Probennahme 136 Kalibrierung (LDO) 143 Kalibrierung mit Kalibrierlösung (Cond) 151 Kalibrierung mit Kalibrierlösung (Condl) 153 Kalibrierung (Oxy) 138 Kalibrierung (pH) 125 Kalibrierung (pH), Dateneingabe vorgemessener Sensoren 132 Kalibrierung (pH), Nullpunktverschiebung 127 Kalibrierung, Redox-Kalibrierung 134 Kalibrierung, Temperaturerfassung, Konfigurierung pH 47 Kaliumchlorid-Lösungen, Tabelle 322 Kalkulation, anzeigen 155 Kanalauswahl und Displayzuordnung (Cond-Cond) 108 Klemmenraum A221(N/X) 25 Klemmenraum A451N 26 Klemmenschild A221N 23 Klemmenschild A451N 24 Klemmenschilder der Module 18 Knick CaliMat, Puffertabelle 310 Konfigurationsdaten, PROFIBUS 214 Konfigurierdaten Puffersatz U1 321 Konfigurierung, Alarm 120 Konfigurierung (Cond) 66 Konfigurierung (Cond-Cond) 113 Konfigurierung (Condl) 80 Konfigurierung (Condl), Übersicht 76 Konfigurierung (Cond), Übersicht 62 Konfigurierung Eingang CONTROL 118 Konfigurierung (Oxy) 94 Konfigurierung (Oxy), Übersicht 90 Konfigurierung (pH) 44 Konfigurierung (pH), Übersicht 40 Konzentrationsmessung, kundenspezifisch (Cond) 69 Konzentrationsmessung, kundenspezifisch (Condl) 83 Konzentrationsmessung, Messbereiche 324 Konzentrationsverläufe 325 Kopiervorlage Konfigurierung Cond 64 Kopiervorlage Konfigurierung Cond-Cond 116 Kopiervorlage Konfigurierung Condl 78 Kopiervorlage Konfigurierung Oxy 92 Kopiervorlage Konfigurierung pH 42 Korrektur (Oxy) 106

LDO-Kalibrierung, Hinweise 143 LDO-Nullpunktkalibrierung in N2 148 LDO-Offsetkorrektur 149 LDO, optischer Sauerstoffsensor 273 LDO-Steilheitskalibrierung in Luft 144 LDO-Steilheitskalibrierung in Wasser 146 Leiterguerschnitte 23 Leitfähigkeit, Kalibrierung 150 Leitfähigkeit, Konfigurierung 62 Leitfähigkeitsmodule, Übersicht 19 Lieferprogramm DP A451N 180 Lieferprogramm PA A221(N/X) 179 Lieferumfang, Dokumentation 7 Lieferumfang, gesamt 15 Lineare Temperaturkompensation (Cond) 75 Lineare Temperaturkompensation (pH) 59 Logbuch 159

Μ

MAIN DISPLAY 31 Manuelle Kalibrierung mit Puffervorgabe 130 Meldungen Alarm und HOLD 36 Membrankompensation, Konfigurierung Oxy 95 Memosens Cond, Beschaltungsbeispiele 280 Memosens Condl, Sensortyp auswählen 81 Memosens Cond, Sensortyp auswählen 67 Memosens, Kalibrierung und Wartung 21 Memosens Oxy, Sensortyp auswählen 95 Memosens pH, Beschaltungsbeispiele 293 Memosens pH, Sensortyp auswählen 45 Memosens-Sensoren anschließen, Klemmenbelegung 22 Memosens-Sensoren, Sensorwechsel 39 MemoSuite-Software 21 Menü 37 Messbereich auswählen, Cond 67 Messbereich auswählen, Condl 81 Messbereiche Konzentration 324 Messmodus 155 Messmodus auswählen, Cond 67, 81 Messmodus auswählen, Oxy 95 Messmodus auswählen, pH 45 Messmodus für Temperaturerfassung einstellen 47 Messstelle, Anordnung (Cond-Cond) 108

Messverfahren ändern 17 Messverfahren einstellen (Gerätetyp) 162 Messwertmodus, PROFIBUS 198 Meswerte anzeigen, Sensormonitor 160 Mettler-Toledo, Puffertabelle 309 Modul einsetzen 17 Module, Lieferprogramm 179, 180 Module, Übersicht 18 Modul-Test 158 Montageplan 16 Montagezubehör 16 Montagezubehör, Lieferprogramm 179, 180

Ν

Natriumchlorid-Lösungen, Tabelle 323 Nebenmesswert, anzeigen 155 Nennbetriebsbedingungen, Stratos Evo A451N 297 Nennbetriebsbedingungen, Stratos Pro A221N/A221X 296 NLF, Temperaturkompensation für natürliche Wässer (Cond) 75 NLF, Temperaturkompensation für natürliche Wässer (Condl) 89 Nullpunktkalibrierung (Condl) 154 Nullpunktkalibrierung (LDO) 148 Nullpunktverschiebung bei ISFET-Sensoren 126

0

Offsetkorrektur, LDO 149 Optischer Sauerstoffsensor, Kalibrierung 143, 144, 146, 148 Optischer Sensor, Beschaltungsbeispiel 273 ORP-Kalibrierung 134 ORP, Messmodus auswählen 45 Oxy, Beschaltungsbeispiele 270 Oxy, Kalibrierung 138 Oxy, Konfigurierung 94 Oxy-Modul, Übersicht 18

Ρ

Parameter AI Function Block 218 Parameter AO Function Block 220 Parameter DI Function Block 222 Parameter DO Function Block 224 Parameter Physical Block 216 Passcodes einrichten 163 Passcode verloren 163 Pfaudler-Sensoren, Anschluss 268

Pfaudler-Sensoren, Beschreibung und technische Daten 60 Phasenlage, LDO-Kalibrierung 143 pH, automatische Kalibrierung 128 pH-Kalibrierung voreinstellen 125 pH, Konfigurierung 44, 94 pH, manuelle Kalibrierung 130 pH-Modul, Übersicht 18 pH, vorgemessene Sensoren 132 pH-Wert-Berechnung 111 Physical Block 189 Physical Block (PB), Parameter 216 Polarisationsspannung, Messung/Kalibrierung 95 POWER OUT, Ausgangsspannung einstellen 163 Prinzipdarstellung Blocktypen, PROFIBUS 186, 187 Prinzipieller Aufbau, PROFIBUS 183 Produktkalibrierung 136 Produktkalibrierung, PROFIBUS 258 PROFIBUS-Adresse festlegen 209 PROFIBUS-Adresse, Konfigurierung Cond 67 PROFIBUS-Adresse, Konfigurierung Condl 81 PROFIBUS-Adresse, Konfigurierung Oxy 95 PROFIBUS-Adresse, Konfigurierung pH 45 PROFIBUS, Diagnose 197 PROFIBUS, Einführung 181 PROFIBUS, Inbetriebnahme 208 **PROFIBUS-Kabel 184** PROFIBUS PA/DP. Unterschiede 183 PROFIBUS-Software, Übersicht 196 Puffersatz auswählen 47 Puffertabellen 309

R

RAM-Test 158 Reagecon Puffer, Puffertabelle 317 Redox-Kalibrierung (ORP) 134 Redoxmessung auswählen 45 Reinigungszyklen CIP, Konfigurierung Cond 73 Reinigungszyklen CIP, Konfigurierung Oxy 103 Reinigungszyklen CIP, Konfigurierung pH 55 Rücksendung 178 Rücksetzen auf Werkseinstellung 164

S

Salinität, Konfigurierung Oxy 107 Salzkorrektur (Oxy) 106 Sammelstatus, PROFIBUS 200 Sauerstoff, Kalibrierung 138 Sauerstoff, Konfigurierung 90 Sauerstoffmodul, Übersicht 18 Sauerstoff STANDARD, Beschaltungsbeispiel 270 Sauerstoff SUBTRACES (Feinstspuren), Beschaltungsbeispiel 272 Sauerstoff TRACES (Spuren), Beschaltungsbeispiel 271 SE 740, optischer Sauerstoffsensor 273 Sensocheck 177 Sensocheck aktivieren 121 Sensoface 177 Sensoranschluss, Beschaltungsbeispiele Cond 275 Sensoranschluss, Beschaltungsbeispiele Cond-Cond 289 Sensoranschluss, Beschaltungsbeispiele Condl 283 Sensordaten anzeigen 157 Sensormonitor, Anzeige der laufenden Messwerte 160 Sensormonitor, Servicemodus 162 Sensortyp auswählen, Cond 67 Sensortyp auswählen, Condl 81 Sensortyp auswählen, Oxy 95 Sensortyp auswählen, pH 45 Sensorwechsel 39 Seriennummer anzeigen 160 Service, Autoklavierzähler inkrementieren 162 Servicemodus 161 Service, Passcodes 163 Service-Passcode verloren 163 Service, Sensormonitor 162 Service, TTM-Intervall rücksetzen 162 Service, Werksvoreinstellung 164 Sicherheitshinweise 7 Signalbelegung A221(N/X) 25 Signalbelegung A451N 26 Signalfarben 32 SIP (Konfigurierung Cond) 73 SIP (Konfigurierung Condl) 87 SIP (Konfigurierung Oxy) 103 SIP (Konfigurierung pH) 55 Slot-Modell 214 Software, Übersicht 196 Software-Version anzeigen 160

Standard-Puffer NIST, Puffertabelle 313 Steilheit in mV umrechnen 133 Steilheitskalibrierung, LDO (Medium Luft) 144 Steilheitskalibrierung, OXO (Medium Wasser) 146 Steilheitskalibrierung, OXY (Kalibriermedium wählen) 97 Steilheitskalibrierung, OXY (Medium Luft) 140 Steilheitskalibrierung, OXY (Medium Wasser) 141 Sterilisierungszyklen SIP, Konfigurierung Cond 73 Sterilisierungszyklen SIP, Konfigurierung OXY 103 Sterilisierungszyklen SIP, Konfigurierung OXY 103 Sterilisierungszyklen SIP, Konfigurierung PH 55 Stern-Volmer-Konstante, LDO-Kalibrierung 143 Stromversorgung A451N 26 Symbole 30

Т

Tastatur 29 Tastensperre 189 Technische Daten 296 Technische Puffer nach NIST, Puffertabelle 312 Temperaturabhängigkeit gängiger Bezugssysteme gemessen gegen SWE 134 Temperatureinheit, Konfigurierung Cond 71 Temperatureinheit, Konfigurierung Condl 84 Temperatureinheit, Konfigurierung Oxy 97 Temperatureinheit, Konfigurierung pH 45 Temperaturerfassung, Konfigurierung Cond 71 Temperaturerfassung, Konfigurierung Condl 85 Temperaturerfassung, Konfigurierung pH 46 Temperaturfühlertyp, Konfigurierung Cond 71 Temperaturfühlertyp, Konfigurierung Condl 81 Temperaturfühlertyp, Konfigurierung Oxy 95 Temperaturfühlertyp, Konfigurierung pH 45 Temperaturkompensation (Cond) 74 Temperaturkompensation (Condl) 88 Temperaturkompensation (pH) 58 TRACES, Sauerstoffspuren messen 271 Transducer Block (TB) 189 Transducer Block (TB), Busparameter 226 TTM, Adaptiver Wartungstimer (ISM), Konfigurierung Oxy 100 TTM, Adaptiver Wartungstimer (ISM), Konfigurierung pH 52 Türkontakt 12 Typschild A221N 23 Typschild A451N 24

U

U1 Eingebbarer Puffersatz 319 Übersichtstabelle DIAGNOSIS_EXTENSION 204 Übertragungsfaktor, Konfigurierung Condl 81 Uhrzeit, anzeigen 155 Uhrzeit und Datum einstellen 122

V

Verbrauchsberechnung des Ionentauschers 109

W

Wechselmodul einsetzen 17 Werkseinstellung 164 Werkszeugnis 2.2 7 Werte eingeben 35 WTW techn. Puffer, Puffertabelle 315

Ζ

Zellfaktor, Konfigurierung Cond 67 Zellfaktor, Konfigurierung Condl 81 Zertifizierung, PROFIBUS 182 Zubehör 179, 180 Zyklische Datenkommunikation, Tabelle 215 Zyklische Datenübertragung 197

Knick Elektronische Messgeräte GmbH & Co. KG

Zentrale

Beuckestraße 22 • 14163 Berlin Deutschland Tel.: +49 30 80191-0 Fax: +49 30 80191-200 info@knick.de www.knick.de

Lokale Vertretungen www.knick-international.com

Originalbetriebsanleitung Copyright 2022 • Änderungen vorbehalten Version: 2 Dieses Dokument wurde veröffentlicht am 17.10.2022. Aktuelle Dokumente finden Sie zum Herunterladen auf unserer Website unter dem entsprechenden Produkt.

