

Analysenmesssystem Protos II 4400(X) / Protos 3400(X)

Betriebsanleitung

Kommunikationsmodul Protos COMFF 3400 (X)-085 Kommunikationseinheit für FOUNDATION Fieldbus

Rücksendung

Bitte kontaktieren Sie das Service-Team. Senden Sie das Gerät <u>gereinigt</u> an die Ihnen genannte Adresse. Bei Kontakt mit Prozessmedium muss das Gerät vor dem Versand dekontaminiert/desinfiziert werden. Legen Sie der Sendung in diesem Fall eine entsprechende Erklärung bei, um eine mögliche Gefährdung der Service-Mitarbeiter zu vermeiden. Die Erklärung finden Sie unter:

https://www.knick-international.com/de/service/repairs/

Entsorgung

Die landesspezifischen gesetzlichen Vorschriften für die Entsorgung von "Elektro/Elektronik-Altgeräten" sind anzuwenden.

Warenzeichen

In dieser Betriebsanleitung werden folgende Warenzeichen ohne spezielle Auszeichnung verwendet:

Calimatic[®], Protos[®], Sensocheck[®], Sensoface[®], Unical[®], VariPower[®], Ceramat[®], SensoGate[®] eingetragene Warenzeichen der Knick Elektronische Messgeräte GmbH & Co. KG, Deutschland

Memosens[®] eingetragenes Warenzeichen der Firmen Endress+Hauser Conducta GmbH & Co. KG, Deutschland Knick Elektronische Messgeräte GmbH & Co. KG, Deutschland

Inhaltsverzeichnis

Modul Protos COMFF 3400(X)-085

Rücksendung	2
Entsorgung	2
Warenzeichen	2
Bestimmungsgemäßer Gebrauch	5
Sicherheitshinweise	6
Betrieb in explosionsgefährdeten Bereichen: Modul COMFF 3400X-085	6
Firmwareversion	7
Foundation Fieldbus (FF)-Technik	8
Buskommunikation	9
Klemmenschild	10
Modul einsetzen	11
Foundation Fieldbus Installation	12
Kommunikationsmodell	14
Resource Block (RB)	14
Analog Input Block (AI)	14
Analog Input Transducer Block (AI TB)	14
Verbindungen (Channels)	14
AI-TB Konfiguration am Gerät	15
Busanschaltung	16
Kopiervorlage: Eigene Einstellungen	17
Offline-Konfiguration	18
Erst-Inbetriebnahme	20
Analog Input Blöcke	21
Konfiguration der AI TB	22
Konfiguration mit Foundation Fieldbus	23
Inbetriebnahme am Foundation Fieldbus	23
Inbetriebnahme und Konfiguration	24
Kalibrierprotokolle	28
Parameter der AI-Transducerblöcke	29
Funktionsblock AO	30

Inhaltsverzeichnis

Modul Protos COMFF 3400(X)-085

1
1
1
2
2
3
3
4
4
4
5
5
6
7
8
0
0
0
1
1
2
2
3
3
4

Bestimmungsgemäßer Gebrauch

Das Modul ist eine Kommunikationseinheit für Foundation Fieldbus.

Das Modul COMFF 3400X-085 ist für Bereiche vorgesehen, die explosionsgefährdet sind und für die Betriebsmittel der Gruppe II, Gerätekategorie 2(1), Gas/ Staub erforderlich sind.

Betrieb in explosionsgefährdeten Bereichen: Modul COMFF 3400X-085

Das Modul ist für den Betrieb in explosionsgefährdeten Bereichen zertifiziert. Bei der Installation in explosionsgefährdeten Bereichen sind die Angaben des Anhangs zu den Zertifikaten und ggf. die mitgeltenden Control-Drawings zu beachten.

Die am Errichtungsort geltenden Bestimmungen und Normen für die Errichtung von elektrischen Anlagen in explosionsgefährdeten Bereichen sind zu beachten. Zur Orientierung siehe IEC 60079-14, EU-Richtlinien 2014/34/EU und 1999/92/EG (ATEX), NFPA 70 (NEC), ANSI/ISA-RP12.06.01.

A WARNUNG! Mögliche Beeinträchtigung des Explosionsschutzes.

- Module, die bereits in Betrieb waren, dürfen ohne vorherige fachgerechte Stückprüfung nicht in einer anderen Zündschutzart eingesetzt werden.
- Vor Inbetriebnahme des Produkts ist durch den Betreiber der Nachweis über die Zulässigkeit der Zusammenschaltung mit anderen Betriebsmitteln (einschließlich Kabel und Leitungen) zu führen.
- Ein Zusammenschalten von Ex- und Nicht-Ex-Komponenten (Gemischtbestückung) ist nicht zulässig.
- Im Ex-Bereich darf zum Schutz gegen elektrostatische Aufladung nur mit einem feuchten Tuch gereinigt werden.

Instandhaltung

Protos-Module können durch den Anwender nicht instandgesetzt werden. Für Anfragen zur Instandsetzung von Modulen steht die Knick Elektronische Messgeräte GmbH & Co. KG unter www.knick.de zur Verfügung.

Modulfirmware COMFF 3400(X)-085: Firmwareversion 2.x

Modul-Kompatibilität	Modul COMFF 3400-085	Modul COMFF 3400X-085
Protos 3400 ab FRONT-Firmwareversion 7.0	x	
Protos 3400X ab FRONT-Firmwareversion 7.0		x
Protos II 4400 ab FRONT-Firmwareversion 1.0.0	x	
Protos II 4400X ab FRONT-Firmwareversion 1.0.0		x

Aktuelle Gerätefirmware / Modulfirmware abfragen

Wenn sich das Gerät im Messmodus befindet:

Drücken der Taste menu, Wechsel zum Diagnosemenü: Gerätebeschreibung

Hinweis: Die Darstellung kann je nach Geräteversion variieren

Foundation Fieldbus (FF) ist ein digitales Kommunikationssystem, das dezentral installierte Feldgeräte über ein Kabel miteinander vernetzt und in ein Leitsystem integriert. Der Anwendungsbereich von Foundation Fieldbus umfasst Fertigungs-, Prozess- und Gebäudeautomatisierung. Als Feldbusstandard nach der Feldbusnorm DIN EN 61158-2 (IEC 1158-2) garantiert Foundation Fieldbus die Kommunikation von verschiedenen Geräten an einer Busleitung.

Grundlegende Eigenschaften

Der "Data Link Layer" des Fieldbus Foundation Protokoll definiert 3 Gerätetypen:

- Der aktive Link Master plant alle Aktivitäten als "Link Active Scheduler" (LAS). Er bestimmt den gesamten Datenverkehr auf dem Bus. Mehrere Link Master an einem Bus erhöhen die Sicherheit, wobei immer nur einer aktiv ist.
- Basic devices sind Peripheriegeräte wie z. B. Ventile, Antriebe, Messumformer oder Analysengeräte. Sie können azyklisch auf Fernwartungs-, Parametrierungs- und Diagnoseanweisungen des Masters reagieren. Messdaten mit Status werden zyklisch vom Link Master abgefragt.
- Bridges können aus verschiedenen Bussystemen ein Netzwerk zusammenschalten.

Buskommunikation

Foundation Fieldbus (FF) ermöglicht zyklische und azyklische Dienste:

Zyklische Dienste - Scheduled Communication:

werden zur Übertragung von Messdaten mit Statusinformation genutzt. Der Link Active Scheduler hat die Liste der Übertragungszeitpunkte für alle Daten aller Geräte, die zyklisch übertragen werden müssen. Ist der Termin für eine Datenübertragung erreicht, sendet der LAS ein Startsignal "Compel Data (CD)" an das betreffende Gerät. Nach Empfang des "Compel Data" beginnt das Gerät mit seiner Datenübertragung auf den Fieldbus.

Azyklische Dienste - Unscheduled Communication

dienen zur Geräteparametrierung, Fernwartung und Diagnose während des Betriebes.

Jedes Gerät hat die Möglichkeit, zwischen dem zyklischen (Scheduled) Datenverkehr noch azyklische (Unscheduled) Daten zu übertragen. Der LAS erlaubt dem Gerät den azyklischen Verkehr, indem er ihm eine Sendeerlaubnis "Pass Token (PT)" zusendet. Erhält das Gerät ein "Pass Token", startet es die Datenübertragung.

Klemmenschild Modul COMFF 3400-085:

Klemmenschild-Aufkleber

An der Innentür können die Klemmenschild-Aufkleber der tiefer liegenden Module angebracht werden. Das erleichtert Wartung und Service.

A VORSICHT! Elektrostatische Entladung (ESD).

Die Signaleingänge der Module sind empfindlich gegen elektrostatische Entladung.

Treffen Sie ESD-Schutzmaßnahmen, bevor Sie das Modul einsetzen und die Eingänge beschalten.

Hinweis: Leitungsadern mit geeignetem Werkzeug abisolieren, um Beschädigungen zu vermeiden.

- 1) Hilfsenergie des Geräts ausschalten.
- 2) Gerät öffnen (4 Schrauben auf der Frontseite lösen).
- 3) Modul auf Steckplatz (D-SUB-Stecker) stecken, siehe Abbildung rechts.
- 4) Befestigungsschrauben des Moduls festziehen.
- 5) Hilfsenergie einschalten.
- 6) Signalleitungen anschließen (s. nächste Seite).
- 7) Prüfen, ob alle Anschlüsse ordnungsgemäß beschaltet wurden.
- 8) Gerät schließen, Schrauben auf der Frontseite festziehen.
- 9) Messgrößen am Gerät zu Al-Blöcken zuweisen.

WORSICHT! Fehlerhafte Messergebnisse.

Durch eine fehlerhafte Parametrierung, Kalibrierung oder Justierung können Messwerte falsch erfasst werden. Protos muss daher durch einen Systemspezialisten in Betrieb genommen werden, vollständig parametriert und justiert werden.

Foundation Fieldbus Installation

Prinzipieller Aufbau einer Foundation-Fieldbus-Anlage:

Control room

Der elektrische Anschluss des Moduls an Foundation Fieldbus erfolgt entsprechend FISCO (Fieldbus Intrinsically Safe Concept, www.fieldbus.org).

Kommunikationsmodell

Siehe Abbildung vorige Seite

Alle Variablen und Parameter des Transmitters sind Blöcken zugeordnet.

Resource Block (RB)

beschreibt die Merkmale des Transmitters (Hersteller, Gerätetyp, Betriebszustand, allgemeiner Status).

Analog Input Block (AI)

2 x 4 Analog Input Funktionsblöcke dienen zur zyklischen Messwertübertragung (Aktueller Messwert mit Status, Alarmgrenzen, frei wählbare Messgröße aus bis zu 2 Messmodulen).

Analog Input Transducer Block (AI TB)

dient zur azyklischen Datenübertragung. Von der Leitstelle kommende Kalibrier-, Konfigurier- und Wartungsanweisungen werden im Transducer Block verarbeitet. Das Signal des Sensors wird zuerst im Transducerblock aufbereitet. Dieser leitet den Messwert an die Analog Input Blöcke weiter, wo dieser dann noch weiterverarbeitet werden kann (Grenzwerte, Skalierung).

Verbindungen (Channels)

Im Kommunikationsmodell sehen Sie die Channel-Nummern für die Verbindungen der Functionblocks an die Transducerblöcke.

AI-TB Konfiguration am Gerät

Zuordnung der Messgrößen zu Analog Input Blöcken am Gerät

Menü	Display	Zuordnen von Messgrößen zu Analog Input Blöcken
verane verane verane verane verane verane par	Auswahl:	Parametrierung aufrufen Aus dem Messmodus heraus: Taste menu : Menüauswahl. Parametrierung mit Pfeiltasten wäh- len, mit enter bestätigen.
	Zurück Z5.6 °C Z5.6 °C 7.00 pH Parametrierung 7.00 pH Anzeigeebene (Gesamtdaten) anz Betriebsebene (Betriebsdaten) bet	Spezialistenebene wählen: Zugriff auf sämtliche Einstellungen, auch die Festlegung der Passzahlen. Freigeben und Sperren von Funktionen für den Zugriff aus der Betriebsebene heraus.
	Parametrierung (Spezialist) Systemsteuerung Modul FRONT Modul BASE Modul PH 3400-032 Modul OXY 3400-062 Modul COMFF 3400-035 Zurück	Modul auswählen: Protos erlaubt die variable Bestückung mit 2 Messmodulen (und FF-Modul). Die verfügbaren Messgrößen werden zugeordnet über "AI-TB-Konfiguration".
	AI-TB2 Busanschaltung	AI-TB Block auswählen: Einem AI-TB Block wird ein Modul zugeordnet. Der AI-TB Block bein- haltet 4 Analog Input Blöcke, denen jeweils eine vom Modul gelieferte Messgröße zugewiesen werden kann.

AI-TB Konfiguration am Gerät

Zuordnung der Messgrößen zu Analog Input Blöcken am Gerät

Menü	Display	Zuordnen von Messgrößen zu Analog Input Blöcken
en par Care Ømpar	Al TB1 Konfiguration (Spezialist) Messmodul Modul PH 3400-032 Analog Input Al 1 DH Analog Input Al 2 OC Analog Input Al 3 OC	AI-TB Konfiguration wählen: Ordnen Sie die Messgrößen einem der 4 Analog Input Blöcke je TB zu. (Siehe Seite 19)
	Analog Input AI 4	ACHTUNG! Die hier eingestell- te Zuordnung gilt auch für die FF-Konfiguration bei der Verbindung der Analog Input Blöcke mit den Channels der Al Transducer Blocks! Dort also identisch einstellen!
Menü	Display	Busanschaltung
ште нала ©щраг	Zurück	Busanschaltung Ein: Zugangskontrolle durch DCS (Kundenseitige Programmierung im Leitsystem erforderlich) Aus: normaler Gerätezugang über Passzahl bzw. Signatur (Audit Trail) Hinweis: Bei irrtümlich eingeschalteter Zugangskontrolle muss das Gerät vom EE-Bus getrennt werden damit das

Kopiervorlage: Eigene Einstellungen

Zuordnung der Messgrößen zu Analog Input Blöcken am Gerät

Al-Block		zugeordnete Messgröße
AI-TB1	gewähltes Messmodul	
	Analog Input Block AI 1	
	Analog Input Block AI 2	
	Analog Input Block AI 3	
	Analog Input Block AI 4	
AI-TB2	gewähltes Messmodul	
	Analog Input Block AI 5	
	Analog Input Block AI 6	
	Analog Input Block AI 7	
	Analog Input Block Al 8	

Die Al-Blöcke sind in zwei Gruppen (Al-Transducerblöcke) aufgeteilt, die jeweils einem Messmodul zugeordnet werden. Dadurch ist es möglich Funktionen in den Messmodulen zu steuern. Wenn nur ein Messmodul bestückt ist, können auch beide Al-TBs dem gleichen Messmodul zugeordnet werden, um mehr Messwerte zyklisch ausgeben zu können. In dieser Beispielkonfiguration haben wir auf Steckplatz [I] ein Modul PH 3400-032, auf Steckplatz [II] ein Modul OXY 3400-062 und das Modul COMFF 3400-085 auf Steckplatz [II].

Im Gerät können den einzelnen Al-Kanälen Messgrößen aus dem gewählten Messmodul zugeordnet werden.

HOLD			25.6 °C 7.03 pH
🔲 AI TB1 I	Konfiguratio	on (Spez	zialist)
Messmoo	dul 🗉 N	Modul P	PH 3400-032
Analog Ir	nput Al 1	Шp	н
Analog Ir	iput Al 2	Ш°С	:
Analog Ir	າput Al 3	Шm	۱V
Analog Ir	າput Al 4	Ш°Е	.
			I
Zuri	ick		

Beispiel 1:

Al-TB1 ist dem Modul PH 3400-032 zugeordnet, für Al1 bis Al4 stehen daher alle Messgrößen des pH-Moduls zur Verfügung.

Beispiel 2:

AI-TB2 ist dem Modul OXY 3400-062 zugeordnet,

für AI5 bis AI8 stehen daher alle Messgrößen des Oxy-Moduls zur Verfügung.

Für eine funktionierende Buskommunikation auf dem Foundation Fieldbus müssen in der online-Konfiguration auch im Leitsystem die Blöcke passend zu den gewählten AI-TB Konfigurationen in der Gerätekonfiguration eingestellt werden. Das modulare Protos lässt keine feste Zuordnung der Messgrößen zu den Als zu - jedes verfügbare Modul kann sich auf einem der drei Steckplätze befinden, was vom Leitsystem aus nicht erkennbar ist.

Daher ist es nicht möglich, das Gerät über das Leitsystem per DD offline vorzukonfigurieren.

Erst-Inbetriebnahme

- 1. Gerät mit Hilfsenergie versorgen.
- 2. Das Konfigurationsprogramm des Leitsystems öffnen.
- Das CFF-File und die DD laden.
 Beim ersten Verbindungsaufbau meldet sich das Gerät wie folgt:

Gerätekennung COMFF 3400-085_____00000000000001020D48_____0000000000

4. Weisen Sie dem Feldgerät die gewünschte Bezeichnung zu (PD_TAG).

Parametrierung des Resource Blocks (RB)

5. Setzen Sie den MODE_BLK. TARGET auf Auto

Parametrierung eines Analog Input Blocks (AI)

- 6. MODE_BLK. TARGET auf OOS (Out Of Service) setzen
- 7. Wählen Sie über den Parameter CHANNEL die gewünschte Prozessgröße aus (Parametrierung im Modul FRONT beachten!).
- 8. Wählen Sie die zur Prozessgröße gehörige Einheit im Parameter XD_SCALE aus.
- 9. Wählen Sie die zur Prozessgröße gehörige Einheit im Parameter OUT_SCALE aus.
- 10.Stellen Sie den Linearisierungstyp LIN_TYPE auf Direct und übertragen Sie die Änderungen.
- 11.Werden diese Parametrierschritte nicht richtig ausgeführt, wird beim Setzen des Blocks auf "Auto" der Blockfehler "Block Configuration Error" erzeugt.

Sie können z. B. mit dem NI-FBUS Konfigurator von National Instruments die Funktionsblöcke graphisch verschalten und dann die Systemkonfiguration in das Gerät laden.

- 12.Laden Sie alle Daten und Parameter in das Feldgerät herunter.
- 13.Setzen Sie die Target Modes aller Analog Input Blöcke auf "Auto".

Die Analog Input Blöcke

Das Modul verfügt über 8 Analogeingangsblöcke (Al 1 ... Al 8). Ein Analog Input Block beinhaltet die Signalbearbeitungsmöglichkeiten für die von den Transducer Blocks gelieferte Messgröße. Folgende Parameter stehen zur Verfügung:

Beispiel:

Im Protos werden Al 1 auf den pH-Wert, Al 2 auf die Temperatur parametriert:

Einstellungen im Al1:

Parameter	Value
CHANNEL	Module 1 – Channel 1 (pH)
XD_SCALE, UNITS_INDEX	рН
OUT_SCALE, UNITS_INDEX	рН
L_TYPE	Direct
MODE_BLK, ACTUAL	Auto

Einstellungen im AI2:

Parameter	Value
CHANNEL	Module 1 – Channel 2 (°C)
XD_SCALE, UNITS_INDEX	℃
OUT_SCALE, UNITS_INDEX	℃
L_TYPE	Direct
MODE_BLK, ACTUAL	Auto

ACHTUNG!

Bei den Verbindungen der Als mit den Al TBs muss die Messgröße (Messwertzeichen) passend zum im Protos parametrierten Messwert eingestellt werden (siehe Seite 15).

Bei fehlerhafter Einstellung gibt es einen "BlockConfiguration-Error" im Al Functionblock.

Konfiguration der AI TB

(Beispiel: Konfiguration über NI-FBUS Configurator / National Instruments)

Nach Anschluss des Protos Modul COMFF 3400-085 an den Foundation Fieldbus ergibt sich im NI-FBUS Configurator diese Blockübersicht (Voreinstellung ist Fieldbus-Adresse 22)

	BECOUDEE	0000001004 (000)
× 4	RESOURCE	0000001234 (RB2)
	AI_TRANSDUCER_1_	0000001234 (AITB)
	AI_TRANSDUCER_2_	0000001234 (AITB)
	DI_TRANSDUCER	0000001234 (DITB)
	AO_TRANSDUCER	0000001234 (AOTB)
	DO_TRANSDUCER	0000001234 (DOTB)
· ··· 🧃	ANALOG_INPUT_1	0000001234 (AI)
	ANALOG_INPUT_2	0000001234 (AI)
· ··· 🧃	ANALOG_INPUT_3	0000001234 (AI)
📦	ANALOG_INPUT_4	0000001234 (AI)
	ANALOG_INPUT_5	0000001234 (AI)
	ANALOG_INPUT_6	0000001234 (AI)
	ANALOG_INPUT_7	0000001234 (AI)
	ANALOG_INPUT_8	0000001234 (AI)
	DISCRETE_INPUT_1_	0000001234 (DI)
	DISCRETE_INPUT_2_	0000001234 (DI)
	DISCRETE_INPUT_3	0000001234 (DI)
· · · · · · · · · · · · · · · · · · ·	DISCRETE_INPUT_4	0000001234 (DI)
···· 🧃	ANALOG_OUTPUT1	0000001234 (AO)
- 2	DISCRETE_OUTPUT1	0000001234 (DO)
	DISCRETE_OUTPUT2_	0000001234 (DO)
	DISCRETE_OUTPUT3_	0000001234 (DO)
- I 🧃	DISCRETE_OUTPUT4_	0000001234 (DO)

In der Function Block-Application fügen Sie bitte alle benötigten AI-Blöcke ein und starten <u>Download Configuration</u>.

Inbetriebnahme am Foundation Fieldbus

Nur wenn das Modul COMFF 3400-085 fachkundig konfiguriert wird, kann die Foundation Fieldbus Kommunikation richtig funktionieren. Es gibt verschiedene Konfigurationstools, die von unterschiedlichen Herstellern angeboten werden (z. B. NI-FBUS Konfigurator / National Instruments). Mit ihnen können das Gerät und der Foundation Fieldbus konfiguriert werden.

Hinweis:

Bei der Installation und bei Konfigurierungsvorgängen über das Leitsystem sind die Bedienvorschriften und die menügeführten Hinweise des Leitsystems bzw. des Konfigurationstools zu beachten.

Installation der DD (Device Description):

Bei Erstinstallation muss die Gerätebeschreibung (Device Description: *.cff, *.sym und *.ffo) in das Leitsystem installiert werden . Für die Netzwerkprojektierung benötigt man das CFF-File (Common File Format).

Diese Dateien können wie folgt bezogen werden:

- auf der mitgelieferten CD
- im Internet: www.knick.de
- über die Foundation Fieldbus: www.fieldbus.org.

Identifikation des Transmitters

Es gibt verschiedene Möglichkeiten einen FF-Transmitter im Netzwerk zu identifizieren. Die wichtigste ist der "Device Identifier", oder auch DEV_ID. Dieser besteht aus Herstellerkennung, Gerätekennung und Seriennummer des Transmitters.

Inbetriebnahme und Konfiguration

Angaben entsprechend dem Beispiel von Seite 18, "Offline-Konfiguration"

Für Parameteränderungen muss MODE_BLK/TARGET auf OOS gestellt werden (Out of Service), da sonst bei [Write Changes] die Fehlermeldung NIF_ERR_WRONG_MODE_FOR_REQUEST erscheint.

Analog_Input_1		
Karte "Process":	CHANNEL	Module 1 - Channel 1
Karte "Scaling":	XD_SCALE/UNITS_INDEX	рН
	OUT_SCALE/UNITS_INDEX	рН
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	
Analog_Input_2		
Karte "Process":	CHANNEL	Module 1 - Channel 2
Karte "Scaling":	XD_SCALE/UNITS_INDEX	°C
	OUT_SCALE/UNITS_INDEX	°C
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	
Analog_Input_3		
Karte "Process":	CHANNEL	Module 1 - Channel 3
Karte "Scaling":	XD_SCALE/UNITS_INDEX	mV
	OUT_SCALE/UNITS_INDEX	mV
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	
Analog_Input_4		
Karte "Process":	CHANNEL	Module 1 - Channel 4
Karte "Scaling":	XD_SCALE/UNITS_INDEX	MOhm
	OUT_SCALE/UNITS_INDEX	MOhm
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	

Analog_Input_5		
Karte "Process":	CHANNEL	Module 2 - Channel 1
Karte "Scaling":	XD_SCALE/UNITS_INDEX	%
	OUT_SCALE/UNITS_INDEX	%
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	
Analog_Input_6		
Karte "Process":	CHANNEL	Module 2 - Channel 2
Karte "Scaling":	XD_SCALE/UNITS_INDEX	°C
	OUT_SCALE/UNITS_INDEX	°C
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	
Analog_Input_7		
Karte "Process":	CHANNEL	Module 2 - Channel 3
Karte "Scaling":	XD_SCALE/UNITS_INDEX	mbar
	OUT_SCALE/UNITS_INDEX	mbar
	L_TYPE	Direct
Button	[Write Changes]	
Button	[Auto]	
Analog_Input_8		
Karte "Process":	CHANNEL	Module 2 - Channel 4
Karte "Scaling":	XD_SCALE/UNITS_INDEX	g/l
	OUT_SCALE/UNITS_INDEX	g/l
	L_TYPE	Direct
Button	[Write Changes]	
Button		

An den Analog-Output Block (AO) kann ein externer Drucksensor über das Foundation Fieldbus-Netzwerk eingebunden werden.

CHANNEL	Channel 21
	(Analog Output Value)
XD_SCALE/EU_100	9999
XD_SCALE/UNITS_INDEX	mbar
OUT_SCALE/EU_100	9999
OUT_SCALE/UNITS_INDEX	mbar
SP_HI_LIM	9999
[Write Changes]	
[Cascade]	
	CHANNEL XD_SCALE/EU_100 XD_SCALE/UNITS_INDEX OUT_SCALE/EU_100 OUT_SCALE/UNITS_INDEX SP_HI_LIM [Write Changes] [Cascade]

Parameter	Value
MODE_BLK TARGET ACTUAL PERMITTED NORMAL	Cas Auto Mar Cas RCas Cas Auto Man OOS Cas Auto
■ ● PV I - VALUE ■ STATUS - QUALITY - SUBSTATUS - LIMITS	Good_Cascade NonSpecific NotLimited
E ● SP E → VALUE E STATUS H QUALITY H SUBSTATUS L LIMITS	1021.77 Good_Cascade NonSpecific NotLimited
DUT - VALUE - STATUS - QUALITY - SUBSTATUS - UMITS	1021.77 Good_NonCascade NonSpecific NotLimited
E ◀ CAS_IN FVALUE E STATUS FQUALITY SUBSTATUS LMITS	🛱 1021.85 Good_NonCascade NonSpecific NotLimited
CHANNEL	Channel 21 - Analog Output Value

Der AO-Block sollte sich dann im ACTUAL-Mode Cas befinden. Am Eingang CAS_IN erscheint der angekoppelte Ausgangswert (AI) von dem verlinkten Drucktransmitter. Im Cascade-Modus wird der Messwert OUT an den Transmitter weitergeleitet und steht im System zur Verfügung. Die erforderlichen Parametereinstellungen für die DI- und DO-Blöcke sind auf der folgenden Seite angegeben.

Discrete_Input_1			
Karte "Process":	CHANNEL	Channel 11	Discrete Input Value
Button	[Write Changes]		
Button	[Auto]		
Discrete_Input_2			
Karte "Process":	CHANNEL	Channel 12	Discrete Input Value
Button	[Write Changes]		
Button	[Auto]		
Discrete_Input_3			
Karte "Process":	CHANNEL	Channel 13	Discrete Input Value
Button	[Write Changes]		
Button	[Auto]		
Discrete_Input_4			
Karte "Process":	CHANNEL	Channel 14	Discrete Input Value
Button	[Write Changes]		
Button	[Auto]		
Discrete Output1			
Karte "Process":	CHANNEL	Channel 31	Discrete Output Value
Button	[Write Changes]		· · · · ·
Button	[Auto]		
Discrete_Output2			
Karte "Process":	CHANNEL	Channel 32	Discrete Output Value
Button	[Write Changes]		
Button	[Auto]		
Discrete_Output3			
Karte "Process":	CHANNEL	Channel 33	Discrete Output Value
Button	[Write Changes]		
Button	[Auto]		
Discrete_Output4			
Karte "Process":	CHANNEL	Channel 34	Discrete Output Value
Button	[Write Changes]		
Button	[Auto]		

Kalibrierprotokolle

Kalibrierprotokolle

Die Protokolle werden in den AI-TBs in binärer Form übertragen. In der DD ist eine Methode zur lesbaren Aufbereitung vorhanden. Die Methode kann über den Menüpunkt "Protokoll lesen" im Menü "Protokolle" des AI-TB gestartet werden.

Das FF-Modul enthält für jeden AI-TB einen Ringbuffer, der bis zu drei Protokolle vorhalten kann. Ein weiteres Protokoll in diesem TB würde dann das älteste Protokoll überschreiben. Über "Protokoll lesen" lässt sich im AI-TB das Kalibrierprotokoll des zugeordneten Moduls auslesen. Das Beispiel zeigt das pH-Protokoll aus dem AI-TB1. Am Ende der Methode gibt es die Möglichkeit das Protokoll zu bestätigen (OK) und damit aus dem Ringbuffer zu löschen. Nach der Bestätigung erhalten Sie Nachricht, wenn weitere Daten, d. h. ein weiteres Protokoll, verfügbar ist. Ohne Bestätigung (Cancel) kann das Protokoll beliebig oft neu gelesen werden.

Parameter der AI-Transducerblöcke

Alle Blöcke entsprechen der FF-Spezifikation "FF-007-5.0 Specifications", nur die beiden AI-TB Blöcke sind erweitert worden (Index 14 ... 39). AI-TB1 und AI-TB2 können im Protos verschiedenen Messmodulen zugeordnet werden.

Index	Parameter	Beschreibung
	Standard-Parameter	
0	AITB	
1	ST_REV	
2	TAG_DESC	
3	STRATEGY	
4	ALERT_KEY	
5	MODE_BLK	
6	BLOCK_ERR	
7	UPDATE_EVT	
8	BLOCK_ALM	
9	TRANSDUCER_DIRECTORY	
10	TRANSDUCER_TYPE	
11	XD_ERROR	
12	COLLECTION_DIRECTORY	
13	PRIMARY_VALUE	Messwert Channel 1
	Herstellerspezifische Erweiterun	gen: Messwerte
14	SECONDARY_VALUE	Messwert Channel 2
15	THIRD_VALUE	Messwert Channel 3
16	FOURTH_VALUE	Messwert Channel 4
	Herstellerspezifische Erweiterun	gen: Produkt-Kalibrierung
17	CAL_SAMPLE_PRD	Startet den ersten Teil der Produktkalibrierung
18	CAL_SAMPLE_PRD_STORED_VAL	Zeigt den gespeicherten Wert des ersten Teils der Produktkalibrierung
19	CAL_PRODUCT	Setzt den Wert für den zweiten Teil der Produktkalibrierung
20	CAL_MODE_PRD	"Mode ofcalibration"
21	CAL_RESULT	Ergebnis der Kalibrierung

Parameter der AI-Transducerblöcke

Index	Parameter	Beschreibung
	Herstellerspezifische Erweiterun	gen: Protokolle
22	PROTOCOL_STATUS	Status
23	PROTOCOL_DATA_0	Binäre Protokolldaten, Part 1
24	PROTOCOL_DATA_1	
25	PROTOCOL_DATA_2	
26	PROTOCOL_DATA_3	
27	PROTOCOL_DATA_4	
28	PROTOCOL_DATA_5	
29	PROTOCOL_DATA_6	
30	PROTOCOL_DATA_7	
31	PROTOCOL_DATA_8	
32	PROTOCOL_DATA_9	
33	PROTOCOL_DATA_A	
34	PROTOCOL_DATA_B	
35	PROTOCOL_DATA_C	
36	PROTOCOL_DATA_D	
37	PROTOCOL_DATA_E	
38	PROTOCOL_DATA_F	Binäre Protokolldaten, Part 16
39	PROTOCOL_CONFIRM	Protokoll übernehmen

Im Modul ist ein Ringbuffer für bis zu 3 Protokolle realisiert. In der DD ist eine Methode enthalten, die ein Protokoll lesbar darstellen kann. Aufgerufen wird die Methode über das Menü "Protokolle" im Al-TB-Block.

Funktionsblock AO

Zyklische Übertragung eines externen Korrekturwertes (z.B. Druckkorrektur bei OXY 3400-062).

DI 1: Unical Status

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							1	Sonde in Stellung MESSEN (PROCESS)
						1		Sonde in Stellung SERVICE
					1			Serviceschalter betätigt
				1				Unical Alarm
			1					Unical Programm aktiv
0	0	0						Kein Programm
0	0	1						Programm: Reinigung
0	1	0						Programm: Cal2Pkt
0	1	1						Programm: Cal1Pkt
1	0	0						Programm: Parken
1	0	1					Programm: USER 1	
1	1	0						Programm: USER 2
1	1	1						Programm: Service

DI 2: CONTACTS / LOCK-Status / ENABLE-Request

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							1	Kontakt K4 aktiv
						1		Kontakt K3 aktiv
					1			Kontakt K2 aktiv
				1				Kontakt K1 aktiv
			1					CAL beendet AI-TB1 (1 min oder bis Cal-Protokoll abgeholt)
		1						CAL beendet AI-TB2 (1 min oder bis Cal-Protokoll abgeholt)
0	0							Messmodus
0	1							unbestätigte Freigabe-Anforderung
1	0							bestätigte Freigabe-Anforderung
1	1							Freigeben

DI Funktionsblock Unical Meldungen

Bei Protos II 4400(X) ab FRONT-Firmwareversion 02.xx.xx

DI 3: Unical-Meldungen

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							1	Wartungsbedarf Sonde
						1		Wartungsbedarf Medienadapter
					1			Wartungsbedarf Unical Grundgerät
				1				Wartungsbedarf Medium
			1					Ausfall Sonde
		1						Ausfall Medienadapter
	1							Ausfall Unical Grundgerät
1								Kalibrier- / Kommunikationsfehler

Aufschlüsselung der Unical-Meldungen: Wartungsbedarf

Wartung	Wartungsbedarf Sonde							
U 231	Sonde Verfahrzeit MESSEN (PROCESS)							
U 234	Sonde Verfahrzeit SERVICE							
U 232	Sonde Verschleißzähler							
U 228	Sondenzylinder undicht							
Wartung	sbedarf Medienadapter							
U 190	Puffer I fast leer							
U 191	Puffer II fast leer							
U 192	Reiniger fast leer							
Wartung	sbedarf / Unical Grundgerät							
U 233	Schalter Wasserdruck							
U 229	Sensorausbausicherung defekt							
U 235	Sicherheitsventil defekt							
U 248	Wasserventil defekt (elektrisch)							

Wartungsbedarf Medium							
U 241	Check Wasser						
U 242	Check Puffer I						
U 243	Check Puffer II						
U 244	Check Reiniger						
U 245	Check Zusatzventil I						
U 246	Check Zusatzventil II						

Unical Meldungen, Unical Step

Bei Protos II 4400(X) ab FRONT-Firmwareversion 02.xx.xx

Aufschlüsselung der Unical-Meldungen: Ausfall

Ausfall S	l Sonde							
U 230	Sonde Endlage Messen (PROCESS)							
U 227	Sonde Endlage SERVICE							
Ausfall N	Nedienadapter							
U 194	Puffer I leer							
U 195	Puffer II leer							
U 196	Reiniger leer							
Ausfall L	JNICAL Grundgerät							
U 220	Schalter Druckluft							
U 225	Sondenventil defekt							
U 224	Unical überflutet							
U 221	Sensor ausgebaut							
Kalibrier	- / Kommunikationsfehler							
U 251	Kalibrierfehler							
U 252	Kommunikationsfehler							

DI 4: Unical-Step

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							1	System in SINGLE_STEP
		х	Х	х	x	Х		Step 1 30
	0							reserviert
0								reserviert

Die halbautomatische Unical-Programmsteuerung im Single Step Mode kann nur am Protos aktiviert und getriggert werden. Über den Bus ist keine Steuerung möglich, der Single Step Mode kann aber beobachtet werden.

DO 1: HOLD-Control

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							1	System HOLD
						0		reserviert
					0			reserviert
				0				reserviert
			0					reserviert
		0						reserviert
	0							reserviert
0								reserviert

DO 2: PARSET

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							1	Parametersatz B (intern)
				0	0	0		Parametersatz nicht von Karte
				0	0	1		Parametersatz 1 (Karte)
				0	1	0		Parametersatz 2 (Karte)
				0	1	1		Parametersatz 3 (Karte)
				1	0	0		Parametersatz 4 (Karte)
				1	0	1		Parametersatz 5 (Karte)
			0					reserviert
		0						reserviert
	0							reserviert
0								reserviert

DO 3: Unical Control

Bit								Bedeutung
7	6	5	4	3	2	1	0	
							Х	reserviert
						1		Sonde in Stellung SERVICE (MESSEN = 0)
					1			manuell, Zeitsteuerung aus (auto, Zeitsteuerung ein = 1)
				х				reserviert
			Х					reserviert
0	0	0				Kein Programmstart		
0	0	1				Programm: Reinigung		
0	1	0				Programm: Cal2Pkt		
0	1	1				Programm: Cal1Pkt		
1	0	0				Programm: Parken		
1	0	1				Programm: USER 1		
1	1	0				Programm: USER 2		
1	1	1						Kein Programmstart

DO 4: LOCK Control

Bit								Bedeutung
7	6	5	4	3	2	1	0	
						0	0	Messmodus
						0	1	Freigegeben
						1	0	Busy
						1	1	not used
					Х			reserviert
				х				reserviert
			Х					reserviert
		Х						reserviert
	Х							reserviert
Х								reserviert

Freigeben / Sperren über DCS

ACHTUNG: Kundenseitige Programmierung im Leitsystem erforderlich!

Protos über das DCS zur Vor-Ort-Kalibrierung freigeben/sperren

Für die Kommunikation mit dem PLS werden die Funktionsblöcke DI 1 und DO 4 genutzt (Kundenseitige Programmierung im Leitsystem erforderlich).

Schritt 1:	Der Benutzer geht an das Gerät und ruft z.B. das Cal-Menü auf. An der Stelle, wo sonst die Passzahl einzugeben ist, erscheint ein Fenster mit "Freigabeanforderung läuft…" Es geht eine Meldung ans DCS mit Bitte um Freigabe					
Schritt 2:	Das DCS bestätigt die Anfrage noch ohne eine Entscheidung. Auf dem Leitsystem geht jetzt ein Mitteilungs-Fenster auf, wo der Anlagenfahrer seine Entscheidung mit Ja/Nein angibt. Solange noch keine Entscheidung erfolgt ist, steht im Display "Warte auf Freigabe durch DCS …"					
Schritt 3:	Die Entsc	heidung ist gefallen:				
	JA:	Das Fenster geht weg und die Passzahl (oder Signatur bei AuditTrail) wird abgefragt, der Benutzer darf jetzt das Menü nutzen				
	NEIN:	Es erscheint ein Fenster "Freigabe verweigert!" und das Gerät geht wieder in den Messmodus.				
Schritt 4:	Nachdem das Menüsystem verlassen wurde, erfolgt eine Meldung an das DCS, dass die manuelle Bedienung been ist. Die Freigabe wird dadurch wieder gelöscht.					

Matrix Funktionssteuerung

Steuerung Parametersatzauswahl / KI-Recorder über Fieldbus H1 Parametrierung/Spezialistenebene/Systemsteuerung/Matrix Funktionssteuerung

Menü	Display	Steuerung über Foundation Fieldbus
entre Reference Sorre Par	Image: Constraint of the second se	Parametrierung aufrufen Aus dem Messmodus heraus: Taste menu : Menüauswahl. Parametrierung mit Pfeiltasten wäh- len, mit enter bestätigen.
	☐ 7.00 pH ☐ 25.6 °C Parametrierung □ Anzeigeebene (Gesamtdaten) anz ⊕ Betriebsebene (Betriebsdaten) bet ⊕ Spezialistenebene (Gesamtdaten) spe Zurück	Spezialistenebene: Zugriff auf sämtliche Einstellungen, auch die Festlegung der Passcodes. Freigeben und Sperren von Funktionen für den Zugriff aus der Betriebsebene heraus.
	Math Image: Total state of the state	In der Spezialistenebene: Auswahl "Systemsteuerung", anschließend – "Matrix Funktionssteuerung".
	Image Image Town of the second secon	Matrix Funktionssteuerung Eindeutige Zuordnung Steuerelement/Funktion. Beispiel: Fieldbus H1 steuert die Parametersatz-Umschaltung. Hinweis: KI-Recorder nur mit Protos 3400(X) Unical mit Protos II 4400(X) ab FRONT- Firmwareversion 02.xx.xx

Protos COMFF 3400(X)-085

Foundation Fieldbus FF-H1	COMFF 3400X-085: digitale Kommunikation im Ex-Bereich über Strommodulation (Ex ia IIC)
Physikalische Schnittstelle	nach IEC 61158-2
Übertragungsrate	31,25 kBit/s
Kommunikationsprotokoll	FF-816
Profil	FF_H1 (Foundation Fieldbus)
Busadresse	am Gerät sichtbar, aber nicht einstellbar
Speisespannung (FISCO)	Busspeisung: 9 17,5 V Lineare Barriere: 9 24 V
Stromaufnahme	< 12 mA
max. Strom im Fehlerfall (FDE)	< 17 mA
FF Kommunikationsmodell	r zertifiziert nach ITK 4.6
1 Physical Block	Gerätebeschreibung
5 Transducerblocks	Anbindung an die Messwertaufbereitung
8 AI-Functionblocks	Ausgabe von Messwerten mit Status über den Fieldbus
4 DI-Functionblocks	Ausgabe von Meldungen und Status über den Fieldbus
4 DO-Functionblocks	Steuerung über den Fieldbus
1 AO-Functionblock	für analoge Kompensations-Signale (z.B. O ₂ Prozessdruck)

Allgemeine Daten

Explosionsschutz	siehe Zertifikate bzw. www.knick.de
(nur Modul in Ex-Ausführung)	
RoHS-Konformität	nach EU-Richtlinie 2011/65/EU
EMV	EN 61326-1, EN 61326-2-3
	NAMUR NE 21
Störaussendung	Industriebereich [*] (EN 55011 Gruppe 1 Klasse A)
Störfestigkeit	Industriebereich
Blitzschutz	nach EN 61000-4-5, Installationsklasse 2
Nennbetriebsbedingungen	Umgebungstemperatur:
	Nicht-Ex: -20 55 °C / -4 131 °F
	Ex: -20 50 °C / -4 122 °F
	Relative Feuchte: 10 95 % nicht kondensierend
Transport-/l agertemperatur	-20 70 °C / -4 158 °F
Г	Г
Schraubklemmverbinder	Einzeldrähte und Litzen bis 2,5 mm ²

* Diese Einrichtung ist nicht dafür vorgesehen, in Wohnbereichen verwendet zu werden, und kann einen angemessenen Schutz des Funkempfangs in solchen Umgebungen nicht sicherstellen.

Messwerte, die den Analog Input Blocks (AI) zugeordnet werden können:

Modultypen PH

Messwert	Maßeinheit
pH-Wert	рН
Messkettenspannung	mV
Messkettenspannung (ORP)	mV
rH-Wert	rH
Glasimpedanz	Ohm
Bezugsimpedanz	Ohm
Temperatur	°C
Temperatur	°F
pH-Nullpunkt	рН
pH-Steilheit	mV/pH

Calculation Block pH / pH

Messwert	Maßeinheit
Delta pH-Wert	рН
Delta ORP	mV
Delta Temperatur	°C

Messwerte, die den Analog Input Blocks (AI) zugeordnet werden können:

Modultypen OXY

Messwert	Maßeinheit
Sättigungsindex (Air)	%
Sättigungsindex (O ₂)	%
Konzentration	mg/l
Konzentration	ppm
Volumenkonzentration (Gas)	%
Volumenkonzentration (Gas)	ppm
Sensorstrom	nA
Temperatur	°C
Temperatur	°F
Luftdruck	mbar
O ₂ -Partialdruck	mbar
Nullpunkt	nA
Steilheit	nA/mbar
Kalibriertimer (adaptiv)	h
Stromeingang	mA

Calculation Block O₂ / O₂

Messwert	Maßeinheit
Delta Sättigungsindex (Air)	%
Delta Sättigungsindex (O ₂)	%
Delta Temperatur	°C
Delta O ₂ -Konzentration	mg/l
Delta O ₂ -Konzentration	ppm
Delta Volumenkonz. (Gas)	%
Delta Volumenkonz. (Gas)	ppm

Messwerte, die den Analog Input Blocks (AI) zugeordnet werden können:

Modultypen COND

Messwert	Maßeinheit
Leitfähigkeit	μS/cm
spezifischer Widerstand	Ohm/cm
Konzentration	%
Konzentration	g/kg
Temperatur	°C
Temperatur	°F
Zellkonstante	cm ⁻¹
USP-Wert	%

Calculation Block COND / COND

Messwert	Maßeinheit
Delta Leitfähigkeit	μS/cm
Delta spezifischer Widerstand	Ohm/cm
Delta Temperatur	°C
Ratio	
(Verhältnis)	
Passage	%
(Durchgang)	
Rejection	%
(Durchhaltevermögen)	
Deviation	%
(Abweichung)	
pH-Wert	рН

Messwerte, die den Analog Input Blocks (AI) zugeordnet werden können:

Modultypen CONDI

Messwert	Maßeinheit
Leitfähigkeit	μS/cm
spezifischer Widerstand	Ohm/cm
Konzentration	%
Konzentration	g/kg
Temperatur	°C
Temperatur	°F
Nullpunkt	S/cm
Zellfaktor	(nur Wert)

Calculation Block CONDI / CONDI

Messwert	Maßeinheit
Delta Leitfähigkeit	μS/cm
Delta spezifischer Widerstand	Ohm/cm
Delta Temperatur	°C
Ratio (Verhältnis)	
Passage (Durchgang)	%
Rejection (Durchhaltevermögen)	%
Deviation (Abweichung)	%

Protos Modul COMFF 3400(X)-085

A

Al-Konfiguration auswählen 15, 16 Al-TB Konfiguration 15, 16 Al-Transducerblöcke, Parameter 29 Aktiver Link Master 8 Analog Input Block (Al) 14 Analog Input Blöcke 21 Analog Input Transducer Block (AI TB) 14 Azyklische Dienste 9

B

Basic devices 8 Bestimmungsgemäßer Gebrauch 5 Bridges 8 Busanschaltung 16 Buskommunikation 9

C

Channel 13, 19 Compel Data (CD) 9 CONTACTS 31

D

Data Link Layer 8 Device Description 23 DI Funktionsblöcke 31 DO Funktionsblöcke 34

Е

Einsatz im explosionsgefährdeten Bereich 6 elektrischer Anschluß des Moduls an Foundation Fieldbus 12 Elektrostatische Entladung (ESD) 11 EMV 39 ENABLE-Request 31

Protos Modul COMFF 3400(X)-085

Entsorgung 2 Erst-Inbetriebnahme 20 Explosionsschutz, Sicherheitshinweise 6

F

Fieldbus-Kabel 12 Fieldbus, verfügbare Meßwerte 40 Firmwareversion 7 FISCO 12 Foundation Fieldbus (FF)-Technik 8 Freigeben / Sperren über DCS 36 Funktionsblock AO 30

G

Gerätefirmware 7

Η

Hardware- und Firmwareversion 7 HOLD-Control 34

I

Identifikation des Transmitters 23 Inbetriebnahme am Foundation Fieldbus 23 Inbetriebnahme und Konfiguration 20 Installation 12 Installation, Modul einsetzen 11 Instandsetzung 6

Κ

Klemmenschilder 10 Kommunikationsmodell 13, 14 Konfiguration mit Foundation Fieldbus 23 Kopiervorlage: Zuordnung der Messgrößen zu Analog Input Blöcken am Gerät 17

Protos Modul COMFF 3400(X)-085

L

LAS 9 LOCK Control 35 LOCK Status 31

Μ

Matrix Funktionssteuerung 37 Messgrößen zu Analog Input Blöcken am Gerät zuordnen 15, 16 Messgrößen zu Analog Input Blöcken zuordnen 15, 16 Messwerte, Zuordnung zu Analog Input Blocks (AI) 40 Modul einsetzen 11 Modulfirmware 7 Modul-Kompatibilität 7

Ρ

Parameter der Al-Transducerblöcke 29 PARSET 34 Pass Token (PT) 9

R

Rücksendung 2

S

Scheduled Communication 9 Schraubklemmverbinder 39 Seriennummer 7 Sicherheitshinweise 6 Sperren (über DCS) 36 Standard Resource Block (RB) 14 Steuerung über Foundation Fieldbus 37

Protos Modul COMFF 3400(X)-085

Т

Technische Daten 38

U

Unical Control 35 Unical Meldungen 33 Unical Status 31 Unscheduled Communication 9

V

Verbindungen (Channels) 14

W

Warenzeichen 2

Ζ

Zugangskontrolle durch DCS 16 Zuordnen von Messgrößen zu Analog Input Blöcken 15, 16 Zyklische Dienste 9

Knick Elektronische Messgeräte GmbH & Co. KG

Zentrale

Beuckestraße 22 • 14163 Berlin Germany Tel.: +49 30 80191-0 Fax: +49 30 80191-200 info@knick.de www.knick.de

Lokale Vertretungen

www.knick-international.com

Copyright 2019 • Änderungen vorbehalten Version: 6 Dieses Dokument wurde veröffentlicht am 30.09.2019 Aktuelle Dokumente finden Sie zum Herunterladen auf unserer Website unter dem entsprechenden Produkt.

Firmwareversion 2.x